
THE MODULAR SURFACE AND CONTINUED FRACTIONS

CAROLINE SERIES

Introduction

The aim of this note is to clarify the somewhat elusive connection between
geodesies on the modular surface M (the quotient of the hyperbolic plane D-0 by the
modular group G = SL (2, T)) and continued fractions. This connection was, for
example, noted by Artin [3] who, by an ingenious use of continued fractions, deduced
the existence of a dense geodesic on M. Our results may be regarded as a rationale
for Artin's method.

The idea that the sequence in which a geodesic y cuts certain fixed lines on M (or
their lifts to D-0) is related to continued fractions is by no means new. However, when
using the lines of the usual tesselation 9~ of H by copies of the fundamental region
| Rez| ^ \, \z\ ^ 1, attempts to find a precise relation between the cutting sequence
of y and the continued-fraction expansions of endpoints of suitable lifts of y are
fraught with minor discrepancies. Two possible solutions to the problem, neither
entirely natural, are to be found in [11, 1].

FIG. 1

In this paper all these difficulties are avoided by replacing 2T by the Farey
tesselation F, Figure 1. In this way we obtain much clearer statements of the rather
remarkable facts. The Farey tesselation is a tesselation of H by ideal triangles, that
is, triangles all of whose vertices lie on U U {oo}. The vertex set is precisely Q U {oo}.
Rationals p/q, p'/q' in their lowest terms are the endpoints of a side of a triangle in
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F if and only if
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P P = + 1. The sides of F turn out to be precisely the images of the
4

imaginary axis under G.
An oriented geodesic in H is divided into segments as it cuts across the triangles

which compose F. In crossing such a triangle A a segment s cuts two sides of A which
meet in a vertex at infinity. We label the (oriented) segment R or L according as this
vertex lies to the right or left of s (Figure 2). This labelling is invariant under the action

typeL

type/?

FIG. 2

of G and hence, to any geodesic y on M, we may associate a cutting sequence
...Rn°LniRn*..., riiGN. If xEj> lies at the end of a segment labelled R, we show
(Theorem A) that there is a unique lift y of y such that the lift £ of x lies on the
imaginary axis and such that the positive and negative endpoints of y on U are

l - l
«2 +

respectively.
Motion along y is obviously related to shifting the cutting sequence. This is made

precise in Theorem B. The relation of the dynamics to the continued-fraction
transformation T:x^(\/x) — [l/x] is explained in Theorem C. These results are
described in §§1, 2.

In §3 we give some applications. We derive the relation of the hyperbolic area on
M and the invariant Gauss measure for T. Theorem B allows an explicit representation
of the geodesic flow as a flow over a shift [2], see also [10]. We compute the height
function in 3.2. Finally, for amusement we rederive some of the well-known results
about the action of G on U and continued fractions in 3.3.

Throughout, H = {zeC:Imz > 0] with the Poincare metric ds2 = (dx2 + dy2)/y2.
Geodesies in H are semicircles centred on U or vertical lines. For the positive and
negative endpoints of an oriented geodesic y we write y^y^^ respectively. The
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modular group G — SL(2,Z) acts by isometries of HI mapping z to (az + b)/(cz
and n: H -> H/SL(2, Z) = M is the projection map. Geodesies on M are exactly the
images under n of geodesies in H. We shall always be interested in oriented geodesies.

We write [n^n^,...] for the continued fraction «XH — and [x] for the integer

part of x, x > 0.
The idea of a geometric interpretation of continued fractions using F goes back

to Humbert [7] and H. J. Smith [12]; the author was introduced to it by Moeckel's
paper [9] which inspired this work.

The author would like to thank the referee for helpful suggestions regarding the
presentation of this paper.

1. Cutting sequences and continued fractions

1.1. The Farey tesselation

The standard fundamental region | Rez | ^ \, \z\^ 1 for G is divided in half by
the imaginary axis. Move the left half,over using the transformation z -> z +1 and
glue the two halves together as in Figure 3. One obtains a new fundamental region

- l

FIG. 3

for G, a quadrilateral. If S denotes the matrix e G then the three images ofo - r
1 - 1 ,

this quadrilateral under /, S and S2 exactly fill the ideal triangle A whose vertices are
at 0,1 and oo, (Figure 4). The images of A under G tesselate H by what we call the
Farey tesselation F. Notice that F can be regarded as the images of the imaginary axis
under G.

It is not hard to see that the images of {0,1, oo} under G are exactly the points
Q U {oo} and that two points p/q, p'/q are joined by a side of F if and only if
P P'
q 4

eGL(2,Z).
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I

FIG. 4

There is a nice description of F in terms of Farey sequences. Recall that the «-th
Farey sequence Fn is the set of rationals p/q with \p\, \q\ ^n arranged in increasing
order. Thus

Fx is —oo, -1 ,0 , l,oo,

F2is - o o , - 2 , - 1 , - i , 0 , l,|,2,oo,

and so on. Rationals p/q > p'/q' are adjacent in some Farey sequence if and only if

fp P'
q 4

, I e G [5]. Thus F may be obtained by drawing the vertical line through 0 and

then successively joining adjacent points in each Farey sequence, Figure 5.

i J I

FIG. 5
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1.2. Cutting sequences

Topologically, the modular surface M is the thrice-punctured sphere with singular
points at the images of /, |(1+*V3) anc* °° respectively. The lines in the Farey
tesselation project to the singular line S which runs from the cusp 7r(oo) to n(i) and
back again. If we take any geodesic y on M, other than S itself, we may lift to a geodesic
y on H and obtain a cutting sequence... Ln-iRn<>Lni... as described in the introduction.
Since different lifts of y differ by covering translations which leave F invariant and
preserve orientation, the labels of a segment and hence the cutting sequence obtained
are independent of the lift chosen.

The cutting sequence terminates if and only if y begins or ends in the cusp 7i(oo).
In this case the label of the initial or final segment may be taken to be either R or
L. We call such segments initial or terminal and sometimes denote them by R^ or
LQQ. If xey D S then we may indicate the position of x in the cutting sequence by
writing ... Rn<>xLnK... We say that the sequence changes type at xeS at which the
segments change from R to L or vice versa, including the points immediately preceding
or following initial or terminal segments.

1.3. Statement of Theorem A

Let A be the set of geodesies in B-fl with endpoints satisfying | y^ | ^ 1,
0 < | y_oo | ^ 1 . Any such geodesic intersects the imaginary axis iU in a point £y.
Notice that the cutting sequence of any such y changes type at £y.

Since geodesies on M repeatedly cut the singular line S we have a natural
cross-section A'of the unit tangent bundle Tx M, namely the set of unit tangent vectors
with base point x e S which point along geodesies whose cutting sequences change type
at x.

It is clear that if y e A then the unit tangent vector uy to y at £y projects to an element
in X. This identification of A with X is almost a homeomorphism.

THEOREM A. The map i.A -*• X, i(y) — n(uy), is surjective, continuous and open. It
is injective except that the two oppositely oriented geodesies joining + 1 to — 1 have the
same image. Moreover, ifuxeX defines a geodesic with cutting sequence ... Rn<>xLni...,
then y = /~1(«a;) has endpoints given by

Yoo = [»i . "2> • • I = [n0, « - i , n-z, • • ],
7-oo

where, if the cutting sequence terminates at either end, so does the corresponding
continued fraction.

If in the cutting sequence R and L are interchanged, then

Vaa =— [ni> n2-> • • •]> ~ = K » n-l> • • •]•
7—oo

REMARK 1.1. Notice that y^ is independent of y_ca and the part of the cutting
sequence which precedes £,, and vice versa.

REMARK 1.2. Since (nr+ l) + 0 = nr+-—-, the terminating sequences ...Lnr+1

and ...LnrR give the same endpoint expansion, accounting for the ambiguity in
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labelling a segment ending in a cusp. The same remark holds for sequences beginning
LRn-r... or Rn-r+1....

COROLLARY. TWO geodesies with the same cutting sequence coincide.

Proof. Fix initial points x, x' at the same division points in each sequence, and
lift to points <!;, £,' e iU+ as in Theorem A. Since the endpoints at infinity of the lifts
of the two geodesies have the same continued-fraction expansion, the geodesies
coincide.

Proof of Theorem A. Let y be any geodesic in H which intersects iU. Since A is
convex, yro > 1 if and only if the segment y n A is of type L, and — 1 ^ y_00 < 0
if and only if the segment immediately preceding A is of type R. Similar remarks
apply if yoo ^ — 1 and 0 < y_00 ^ 1. Since any geodesic on M cutting S at x can be
lifted to a geodesic in H which intersects iU at the lift d; of x, we see that / maps A
onto X. Moreover, suppose that y,y'eA and that i(y) = /(/)• Since the only
identification of pairs of points on iU under G is given by Q: z -> — 1/z one sees that,
if y z£ y\ then Q{y) = / . The only geodesies ye A such that Q(y)eA are the geodesic
joining -I-1 to — 1 and its inverse. This proves the first part of the statement.

Suppose now that ye A and ym> 1. Let y^ = [nvn2,...]. Let p1 = n1 if y^ > n1

and let p1 = nl-\ if y^ = nv Let ny = y n (Rez = pj. Between £y and ny the
tesselation F partitions y into/?! segments at the vertical lines R e z = 0 , 1 , ...,pv Thus
the cutting sequence of y between £y and ny is LVK Finally, if y^ = 1, then the
sequence starting at djy is either R^ or L^.

Apply the map p1:z-* —l/(z—p1). Clearly Px&G; moreover one checks easily
that pjyjn ^ - 1 and 0 < pM-* < U a n d t h a t Piily) = < W S i n c e Pi^G^^y)
is also a lift of n(y), and so the cutting sequence of y beginning at rjy is the same as
the cutting sequence of px(y) beginning at £Pl(yy If ^i(yoo) = — 1 this sequence
terminates with an ambiguous segment R^ or L^; otherwise, setting p2 = n2 if
—PiiVoo)̂  ^ a n d P2 = «2— 1 otherwise, the cutting sequence begins with p2 segments
of type R. Applying /?2: z -> — 1 /(z +/?2)> the argument repeats. Exactly similar
arguments apply if y^ ^ — 1.

Notice that, if y^ e N, y^ > 1, then the cutting sequence is ambiguously LniR or
Lni+1, consistent with the ambiguity in the continued-fraction expansions.

To study the negative endpoint y_00 apply the map Q:z -»• — 1/z. If y has cutting
sequence ...Ln-iRn<>E,yL

niRn*... then since QeG the geodesic ^(y)"1 running from
Q(7co) to Q(y_oo) has cutting sequence ...LniQ{QRn*Ln-K... Clearly Q^y^eA
and ^Q(y)-' = 2(^y)- Thus ^(y-oo) = [w05w-i» •••]> w m c n proves the result.

2. Dynamics

In order to set up symbolic dynamics for the geodesies on M we need to investigate
the relation between shifting cutting sequences and movement along geodesies. We
shall describe symbolic dynamics for the first return map P on our special cross-section
Xof^M.

For ux e X, let P(ux) be the unit tangent vector where the geodesic through x in
the direction ux next enters X after ux. Let the base point of P(ux) be P(x). It is clear
that P(ux) is defined unless the segment immediately following x is terminal. (Note
that if the cutting sequence following x is LWlL00 then the point preceding the terminal
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segment L^ — R^ lies in X.) Let X* = {ux e X: the segment immediately following
ux is not terminal}. We have defined P: X* -* X, the first return map for the cross-section
X of the geodesic flow.

If a geodesic on M has cutting sequence ...RnoxLnK.. starting from xeS, then
the same geodesic reading from P(x) has cutting sequence ... Rn<>LniP(x) Rn*.... Thus
the first return map corresponds to shifting cutting sequences to the left. In order to
construct symbolic dynamics we introduce the space Nz x Z2, where the first coordinate
will record the sequence ... n0 nx n2... of exponents and the second will record whether
the segment immediately following the base point is of type L or R. We take
terminating sequences into account by adjoining points whose sequences begin or end
in a row of zeros.

Thus, let

£ = {((.ni)^Nl,w):nieN, - o o ^ A^ < 0 < N2 ^ co,weZ2}

and let Z* £ Z be the subset with N2> \. When we shift the (/^-sequence we also
change the type ...LxR... to ...RP(x)L... and vice versa. Thus we define

6:1*—>Z, <7((«i),w) = (ff((«i)),M;+l),

where oiin^))] = nj+1 is the left shift.
If e = ((fy), 0) e Z let y(e) be the geodesic in H whose endpoints are y^ie) = [nlt n2,...]

and — l/y_oo(e) = [«0>«-i, •••]• Likewise if e = ((«<), 1) let y{e) be the geodesic
with endpoints y^ie) = — [/ils w2,...] and \/y-^{e) = [n^n^ . . . ] . Define Z>:Z -> X so
that D(e) is the projection on TtM of the unit tangent vector to y(e) based at

THEOREM B. With the product topology on Z, the map D is a continuous surjection
Z -> A" W/HC/I IJ bijective except at points whose expansions (n{) terminate in zeros on
one or other side. The fibre of D above the image of any such point consists of the two
equivalent expansions described in Remark 1.2. Moreover Z)(Z*) = X*, and the diagram

a
I * >Z

p
X* >X

commutes.

Proof. It is clear that the map e\-+y(e), eeZ, maps surjectively to A and has
fibres as claimed. By Theorem A the same is true of D.

If e = ((nt), 0)eZ* then by Theorem A one immediately knows that the cutting
sequence of y(e) is ... Rno^e) Ln»... and hence the geodesic on M through D(e) has
cutting sequence ... Rn<>xLni, where x = n(£y{e)). By the discussion above, P(D(e)) has
cutting sequence ... Rn<>LniP(x)Rn* This is also the cutting sequence of
D(p(e)) = (^((nj), 1). By the corollary to Theorem A, two geodesies in A with the same
cutting sequence coincide. A similar argument works if e = ((«$), 1). This proves the
result.

COROLLARY. Geodesies y,y' EA are equivalent under G if and only if

on(d-\y)) = d~\yf) for some neZ,

where d:Y,-> A is the map d(e) = y(e).
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Proof. If y, y' are equivalent, then n(y) = n{y') and y, y' have the same cutting
sequence starting at different points. Thus Pni(y) = i{y') for some «eZ. The result
follows from the theorem.

Conversely, if and~\y) = <t\y') for some n, then Pni(y) = /(/) and so n(i{y)),
n(i(y')) lie on the same geodesic in M, so that y, / are equivalent.

This corollary is the fact on which the work in [1] is based.
Finally we can make precise the connection between the dynamics of the

geodesic flow on M and the continued-fraction transformation r:(0,1) -> [0,1),
T(0) = (1/0) — [1/0]. The shift i r o n l induces a map on the positive endpoints of
geodesies in A. Let W = {te U: \t| ^ 1}. Then the map p+:2 -• W,

can be thought of as projection onto the positive endpoint y^e) of the geodesic y(e)
represented by eel,.

THEOREM C. Define J.W^ [0,1),

Then the diagram

commutes.

Jop+ |

(0 ,1 )—£-

M>1,
Ul = l.

*• 2

\ Jop+

- [0,1)

Proof. Let ux e X* and let y be the geodesic through x in the direction ux. Lift y
to a geodesic y in H so that x lifts to £yeiM. With the notation of Theorem A, P(ux)
lifts to the unit tangent vector to y at the point ny. As in Theorem A, let
px(z) = — \/(z—p^). Then px(y)eA and p^fy) = £Pl(yy Thus, if we now lift y so that
the lift of P(x) lies on iU, then P(ux) lifts to the unit tangent vector to p^y) at €Pl(Yy
Combining this with Theorem B we see that yaffle)) — Pi(ym(e))- It is now easy to
check the statement of the theorem.

REMARK 2.1. There is obviously an analogous result for the projection from 2 to
negative endpoints.

REMARK 2.2. The discontinuity in / may be explained as follows. The map p+ o P
has jump discontinuities at integer points Z*, while 7"is discontinuous at points \/n,
neN. With our definitions the jumps unfortunately occur on opposite sides of the
discontinuities for the two functions. Our definition of/compensates for this. In order
to have /(JC) = l/ |x|, |x | ^ 1, one would have to lift ueX—X* to lie on a geodesic
y with — 1 < y.oo < 0, ym = oo at the point where y cuts the hyperbolic line joining
— 1, 0. The statement of Theorem A would then be modified for geodesies with
ym = oo. The map p+oP would be defined to be continuous from the right instead
of from the left at positive integer points.
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Another solution, more in the spirit of the symbolic dynamics of Theorem B, would
be to take both p+ o P and T as two-valued at the points in question.

3. Applications
3.1. The Gauss measure

It is well known that the Gauss measure

1 f dx
m(E) =

Iog2j£l+;c

is invariant for the continued-fraction transformation T on (0,1) in the sense that
m(7^1E) = tn(E) for every measurable E ^ (0,1) [4]. It is also well known that there
is a natural invariant measure /J. for the geodesic flow on Tx M given by the projection
of the measure (dxdy/y2) d9 on 0-0 x S1 « Tx H to Tx M. Now u e Tx 0-0 may be specified
by giving the endpoints oi,fieU of the geodesic y(u) through u, and arc length t
measuring the distance of u from, say, the (Euclidean) midpoint of y(u). In terms of
this coordinatization the above measure transforms to (da.dfi/(<x—P)2)dt [6].

Now, quite generally, let $t,teU, be a measurable flow on a Lebesgue space Y
preserving a measure /z, with a cross-section E ^ Y. Let P:E-*E be the first return
map of ^t. Then there is always a unique ^-invariant measure v o n £ such that /i fibres
locally as v x dt, where dt is Lebesgue measure on the flow lines of (f>t [2].

In our case ^ is a cross-section for the geodesic flow on Tx M. Identifying X with
A as in Theorem A, one sees that the natural ^-invariant measure on X induced by
(doLdp/(a-p)2)dt is v = d<xdfi/(a-p)2.

Now let us compute the projection of v on (0,1) under Jop+. Since

da 1

p%v is the measure dp/0(1 +0) on [1, oo). Thus J*p% v = J+(d0/0(\ +0)) = dy/{\ +y).
On normalizing we recover the Gauss measure for T.

3.2. The height function

We now compute the length of geodesic arc between successive entries of X. This
will give a representation of the geodesic flow on 7̂  M as a flow built over Z, a [2].

Suppose that y e A and y^ > 1 and let £y, ny be as in the proof of Theorem A.
By one of the formulae for hyperbolic distance d,

d(£y, ny) = log

Since fy> ^y lie on the circle radius hiv^-y-oo), centre iCoo + y-oo) (Figure 6), one
obtains

Thus the distance between cuts ... Rn^yL
nK.. and ...RnoLninyR

nt... is

(3.2.1) \ log ( K n2,...] [n0, n_x, n_2,...] [n2, n3,...] [nlt n0, «_15...]).

It is clear by symmetry that one obtains the same formula if y^ ^ — 1.

/ yoo-bJ
V bJ-y-on"
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- l y-co o Kroo-y-co) >

With px defined as in §1, note that

Thus (3.2.1) may also be written

In particular, if y is periodic with period n l t . . . , n 2 r , we obtain

(Pzr •••Pl)'(yao)

for the length of a period. Since g = p2r... px e G is the primitive element fixing y, and
since g'iy^) = A2, g'(y_oo) = ^~2> where A > 1 is the largest eigenvalue of g, we
recover the usual formula, namely 2 log A, for the length of closed geodesies.

3.3. Action of G on U and continued fractions

We can use the results of §§1, 2 to recover some well-known results about
continued fractions, see for example [8].

LEMMA 3.3.1. Let y,y' be geodesies in H with ya^ = y'CX). Then the cutting
sequences of y, y' eventually coincide.

Proof. We may obviously assume that the cutting sequences do not terminate, so
that y^^Q. Pick qx,q2eQ such that the circle joining qx to q2 cuts both y and / .
Suppose that q1eFn, ^ e f m . Then by moving closer to y^ if necessary, we can find
q,q' adjacent in Fmax{nTn)

 s u c n that the line C joining q to q' cuts y,y'. Apply geG
such that g{q') = oo. It is clear that the segments of giy),giy') immediately after the
intersection with g(C) have the same label (Figure 7). Let Cx be the side of F next
cut by y, y'. Again apply gx e G so t h a t ^ C J is a vertical line, and the argument repeats.
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FIG. 7

DEFINITION 3.3.2. We say that two continued fractions

oc = i L̂ ij n2,...], p = i [mlf m2,...

have the same tails mod 2 if there exist r, s such that

[0mod2
r + 5"ilmod2

and nr+k = ms+k, k^Q. (We write ± [0, nlt...] if a e (-1,1).)

3.3.3. Points a,/?e IR are equivalent under G if and only if they have the same tails
mod 2.

Proof. Since — 1 /(a — n1) = — [n2, n3,...] if a = [nlt n2,...], sufficiency is clear.
Thus suppose that a., fie U, g<x = /?, geG. By applying zi—• \/z if necessary (note

that this does not change tails mod 2), we may assume that at.,fi> 1. Choose
(5e(—1,0) such that the geodesies y, y' joining S to a and /? lie in A. Let y,y' have
cutting sequences ...£yL

miRm*... and ...^yL
niRni... respectively. By Lemma 3.3.1,

the geodesic / ' joining gS to get = fi has cutting sequence ... £,y«... RnkLnk+i... for
some k. Since y" and y are equivalent under G, their cutting sequences, starting from
equivalent initial points, coincide, and hence there exists r e 2Z such that ni+r = mt,
j ^ k. This proves the result.

3.3.4. A number a > 1 has a purely periodic continued-fraction expansion if and
only if a is a reduced quadratic surd (that is, if the conjugate root <X satisfies
- 1 < (X < 0). / /

then
a = [nx,n2, ...,n2r]

Proof. Suppose that a = [nlt ...,n2r]. Let y be the geodesic with endpoints
ôo = a> 7-oo = fi> —1/P = [W2r>-->«i]- Then ye A has a periodic cutting sequence

which is fixed by P2r: in other words y is fixed by g e G, g # /. Thus a, /? are fixed
by g and hence are conjugate roots of a quadratic equation over Z.
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Conversely, let a be a reduced quadratic surd with conjugate root <5f, satisfying the
equation ax2 + bx+c = 0, where a,b, c are relatively prime and a > 0. It is easy to
show, using the inequalities a > 1 , -1 < ff < 0, that | a \, \ b \, \ c | are bounded in terms
of D = b2 — 4ac. Thus there are only a finite number of reduced quadratic surds with
the same discriminant D. Now consider p2pr acting on the geodesic joining 8. to a.
Since p2px e G, it follows that p2Pi(00, pzpx{<x) are another pair of reduced quadratic
surds with the same discriminant. The same holds for p2r... p^K), p2r... px{ai) for
any r. Thus eventually this sequence repeats so that the endpoint expansions are
periodic.

3.3.5 The tail of the expansion ofaeU is periodic if and only if a is a quadratic
surd.

Proof. Suppose that the expansion of a has periodic tail. As in the proof of 3.3.3
we may find geG such that go. is purely periodic, gen = [nlt ...,nr]. Applying 3.3.4,
got, is quadratic, hence so is a.

Conversely, suppose that a is quadratic and let <5? be the conjugate root. Let y be
the geodesic joining a to «. Pick a lift gy of n(y) with gy e A. By 3.3.4, got. has a periodic
expansion and hence, by 3.3.2, the tail of a is periodic.
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