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The good pants homology and the
Ehrenpreis Conjecture

By JEREMY KAHN and VLADIMIR MARKOVIC

Abstract

We develop the notion of the good pants homology and show that it
agrees with the standard homology on closed surfaces. (Good pants are
pairs of pants whose cuffs have the length nearly equal to some large num-
ber R > 0.) Combined with our previous work on the Surface Subgroup
Theorem, this yields a proof of the Ehrenpreis Conjecture.

1. Introduction

Let S and T denote two closed Riemann surfaces. (All closed surfaces in
this paper are assumed to have genus at least 2.) The well-known Ehrenpreis
Conjecture asserts that for any K > 1, one can find finite degree covers S and
T1, of S and T respectively, such that there exists a K-quasiconformal map
f:S1 = T1. The purpose of this paper is to prove this conjecture. Below we
outline the strategy of the proof.

Let R > 1, and let II(R) be the hyperbolic pair of pants (with geodesic
boundary) whose three cuffs have the length R. We define the surface S(R)
to be the genus two surface that is obtained by gluing two copies of II(R)
along the cuffs with the twist parameter equal to +1. (These are the Fenchel-
Nielsen coordinates for S(R).) By Orb(R) we denote the quotient orbifold
of the surface S(R) (the quotient of S(R) by the group of automorphisms of
S(R)). For a fixed R > 1, we sometimes refer to Orb(R) as the model orbifold.
The following theorem is the main result of this paper.

THEOREM 1.1. Let S be a closed hyperbolic Riemann surface. Then for
every K > 1, there exists Ry = Ry(K,S) > 0 such that for every R > Ry, there
are finite covers S1 and Oy of the surface S and the model orbifold Orb(R)

respectively, and a K-quasiconformal map f : S1 — O;.

The Ehrenpreis Conjecture is an immediate corollary of this theorem.
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COROLLARY 1.1. Let S and T denote two closed Riemann surfaces. For
any K > 1, one can find finite degree covers S1 and T1 of S and T respectively,
such that there exists a K-quasiconformal map f:S1 — T1.

Proof. Fix K > 1. It follows from Theorem 1.1 that for R large enough,
there exist

(i) finite covers Sy, T1, of S and T respectively;
(ii) finite covers 07 and O} of Orb(R);
(iii) v/K-quasiconformal mappings f : S; — Op and g : T} — Oj.

Let Oy denote a common finite cover of O; and O). (Such Oy exists since
Op and O] are covers of the same orbifold Orb(R).) Then there are finite
covers Sy and Th, of Sy and T}, respectively, and the v/ K-quasiconformal maps
f:8— 0y and g : Ty — Oo, that are the lifts of f and g. Then g 'o f :
So — Ty is K-quasiconformal map, which proves the corollary. ([

In the remainder of the paper we prove Theorem 1.1. This paper builds
on our previous paper [4], where we used immersed skew pants in a given
hyperbolic 3-manifold to prove the Surface Subgroup Theorem. We note that
Lewis Bowen [1] was the first to attempt to build finite covers of Riemann
surfaces by putting together immersed pairs of pants. We also note that it
follows from the work of Danny Calegari [2] that the pants homology is equal
to the standard homology. This means that every sum of closed curves on a
closed surface S that is zero in the standard homology H;(.S) is the boundary
of a sum of immersed pairs of pants in S.

We are grateful to Lewis Bowen for carefully reading the manuscript and
suggesting numerous improvements and corrections. The second named author
would like to acknowledge that the first named author has done most of the
work in the second part of the paper concerning the Correction Theory.

Outline. In our previous paper [4] we proved a theorem very similar to
Theorem 1.1, namely that given a closed hyperbolic 3-manifold M3, and K > 1,
R> Ro(K,M?3), we can find a finite cover O; of Orb(R) and a map f : O — M3
that lifts to a map f: H? — H3 such that af: OH? — OH? has a K-quasi-
conformal extension. We proved that theorem by finding a large collection of
“skew pairs of pants” whose cuffs have complex half-lengths close to R, and
which are “evenly distributed” around every closed geodesic that appears as a
boundary.

We then assemble these pants by (taking two copies of each and then)
pairing off the pants that have a given geodesic as boundary, so that the re-
sulting complex twist-bends (or reduced Fenchel-Nielsen coordinates) are close
to 1. We can then construct a cover O; of Orb(R) and a function f: O — M
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whose image is the closed surface that results from this pairing. The function
f will then have the desired property.

We would like to proceed in the same manner in dimension 2, that is,
when a 3-manifold M? is replaced with a closed surface S. We can, as before,
find a collection of good immersed pants (with cuff length close to R) that
is “evenly distributed” around each good geodesic (of length close to R) that
appears as boundary. If and when we can assemble the pants to form a closed
surface with (real) twists close to 1, we will have produced a K-quasiconformal
immersion of a cover of Orb(R) into S.

There is only one minor detail: the unit normal bundle of a closed geodesic
in S has two components. In other words, an immersed pair of pants that has
a closed geodesic v as a boundary can lie on one of the two sides of . If, in
our formal sum of pants, we find we have more pants on one side of v than
the other, then we have no chance to form a closed surface out of this formal
sum of pants. It is for this very reason that the Ehrenpreis Conjecture is more
difficult to prove than the Surface Subgroup Theorem.

Because our initial collection is evenly distributed, there are almost the
same number of good pants on both sides of any good geodesic, so it is natural
to try to adjust the number of pairs of pants so that it is balanced (with the
same number of pants on both sides of each geodesic). This leads us to look
for a “correction function” ¢ from formal sums of (normally) oriented closed
geodesics (representing the imbalance) to formal sums of good pants, such that
the boundary of ¢(X) is X.

The existence of this correction function then implies that “good boundary
is boundary good”; that is, any sum of good geodesics that is a boundary in
H,(S) (the first homology group of S) is the boundary of a sum of good pants.
Thus we define the good pants homology to be formal sums of good geodesics
(with length close to R) modulo boundaries of formal sums of good pants. We
would like to prove that the good pants homology is the standard homology
on good curves.

The natural approach is to show that any good curve is homologous in
good pants homology to a formal sum of 2¢g particular good curves that rep-
resent a basis in H1(S). (g is the genus of S.) That is, we want to show that
there are {hi,...,hag} good curves that generate H;(S) (here H(S) is taken
with rational coefficients) such that every good curve ~ is homologous in the
good pants homology to a formal sum 3" a;h; for some a; € Q. Then any sum
of good curves is likewise homologous to a sum of good generators h;, but if
the original sum of good curves is zero in H;(S), then the corresponding sum
of h;’s is zero as well.

To prove the Good Correction Theorem , we must first develop the theory
of good pants homology. Let * denote a base point on S. For A € 71 (S, x)\{id},



4 JEREMY KAHN and VLADIMIR MARKOVIC

we let [A] denote the closed geodesic freely homotopic to A. Our theory begins
with the Algebraic Square Lemma, which states that, under certain geometric
conditions,
> (-1)"[AUB;V] =0
i,j=0,1

in the good pants homology. (The curves [A;UB;V] must be good curves, the
words A;UB;V reasonably efficient, and the length of U and V sufficiently
large.) This then permits us to define, for A, T € (S, %),

1
Ar =5 ([TAT~'U] - [TA™'T D)),
where U is fairly arbitrary. Then A in good pants homology is independent
of the choice of U.
We then show through a series of lemmas that (XY)r = X7+ Y7 in good
pants homology, and therefore

XT = ZU(])(QZ])Ta
O

where by X = gfl ... 9, ~ we have written X as a product of generators.
(Here g1,. .., gag are the generators for 7 (S, *) and o(j) = +1.) With a little
more work we can show

[X] = Zg(j)(gij)T
as well, and thus we can correct any good curve to good generators.

We are then finished except for one last step: We must show that our
correction function, which gives an explicit sum of pants with a given boundary,
is well behaved in that it maps sums of curves, with bounded weight on each
curve, to sums of pants, with bounded weight on each pair of pants. We
call such a function semirandom, because if we pick a curve at random, the
expected consumption of a given pair of pants is not much more than if we
picked the pair of pants at random.

We define the correction function implicitly, through a series of lemmas,
each of which asserts the existence of a formal sum of pants with given bound-
ary, and which is in principle constructive. The notion of being semirandom is
sufficiently natural to permit us to say that the basic operations, such as the
group law, or forming [A] from A, as well as composition and formal addition,
are all semirandom. So in order to verify that our correction function is semi-
random, we need only to go through each lemma observing that the function
we have defined is built out of the functions that we have previously defined
using the standard operations that we have proved are semirandom.

To make the paper as easy to read as possible, we have relegated the
verification of semi-randomness to the “Randomization remarks” that follow
our homological lemmas and that use the notation and results (that basic con-
structions are semirandom) that we have placed in the appendix. We strongly
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recommend that the reader skip over these Randomization remarks in the first
reading and to interpret the word “random” in the text to simply mean “ar-
bitrary.”

A word on notation. When we use the letter K to denote a constant then
we mean a universal constant or if K depends on parameters X,Y, Z,... then
we write K(X,Y,Z,...) or we may leave out some of the parameters. In
sections where we fixed certain parameters we may leave out the dependence
of constants on these parameters.

2. Constructing good covers of a Riemann surface

2.1. The reduced Fenchel-Nielsen coordinates and the model orbifolds. Let
5% be an oriented closed topological surface with a given pants decomposition
C, where C is a maximal collection of disjoint simple closed curves that cut
S0 into the corresponding pairs of pants. We will say that C makes S° into a
panted surface.

Denote by C* the set of oriented curves from C. (Each curve in C is taken
with both orientations.) The set of pairs (II, C*), where II is a pair of pants
from the pants decomposition and C* € C* is an oriented boundary cuff of II,
is called the set of marked pants and is denoted by II(S°). For C € C, there
are exactly two pairs (II;, Cf) € TI(S°), i = 1,2, such that C7 and Cj are the
two orientations on C. (Note that IT; and II, may agree as pairs of pants.)

Let (S,C) be a panted Riemann surface. Then for every cuff C' € C, we
can define the reduced Fenchel-Nielsen coordinates (hl(C), s(C)) from [4]. Here
hl(C) is the half-length of the geodesic homotopic to C, and s(C) € R/hl(C)Z
is the reduced twist parameter that lives in the circle R/hl(C)Z. (When we
write s(C') = x € R, we really mean s(C') = x mod(hl(C)Z).) The following
theorem was proved in [4] (see Theorem 2.1 and Corollary 2.1 in [4]).

THEOREM 2.1. There exist constants €,§ > 0 such that the following
holds. Let S denote a panted Riemann surface whose reduced Fenchel-Nielsen
coordinates satisfy the inequalities

Ihl(C) — B| < & and |s(C) — 1| < %
for some € > ¢ > 0 and R > R. Then there ezist a marked surface Mg,
with the reduced Fenchel-Nielsen coordinates hl(C) = R and s(C) =1, and a
K-quasiconformal map f: S — Mg, where
E+e
E—¢

Let R > 1, and let Orb(R) denote the corresponding model orbifold (de-
fined in the introduction). In the next subsection we will see that the sig-

K=

nificance of the above theorem comes from the observation that any Riemann
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surface M with reduced Fenchel-Nielsen coordinates hl(C) = R and s(C) =1
is a finite cover of Orb(R).

2.2. A proof of Theorem 1.1. Below we state the theorem that is then
used to prove Theorem 1.1.

THEOREM 2.2. Let S denote a closed Riemann surface, and let £ > 1.
There exists R(S,e) > 1 such that for every R > R(S,¢), we can find a finite
cover S1 of S that has a pants decomposition whose reduced Fenchel-Nielsen
coordinates satisfy the inequalities

Ihl(C) — R| < ¢ and |s(C) — 1| < %.

This theorem will be proved at the end of section.

Proof of Theorem 1.1. Let K > 1. It follows from Theorem 2.1 that for
€ > 0 small enough, and every R large enough, there is a K-quasiconformal
map f : S1 — Mg, where Mg is a Riemann surface with reduced Fenchel-
Nielsen coordinates hl(C) = R and s(C) = 1, and S; is the finite cover of S
from Theorem 2.2. Recall the corresponding model orbifold Orb(R) (defined in
the introduction). As we observed, the surface Mp is a finite cover of Orb(R).
This completes the proof of the theorem. O

2.3. The set of immersed pants in a given Riemann surface. From now on
S = H2 /G is a fixed closed Riemann surface and G a suitable Fuchsian group.
By I' we denote the collection of oriented closed geodesics in S. By —v we
denote the opposite orientation of an oriented geodesic v € I'. We sometimes
write v* € I' to emphasize a choice of orientation.

Let ITy denote a hyperbolic pair of pants. (That is, Iy is equipped with a
hyperbolic metric such that the cuffs of IIy are geodesics.) Let f : IIp — S be a
local isometry. (Such an f must be an immersion.) We say that IT = (f,IIp) is
an immersed pair of pants in S. The set of all immersed pants in S is denoted
by II. Let C* denote an oriented cuff of IIy. (The geodesic C* is oriented as a
boundary component of Ily.) Set f(C*) =~ € I'. We say that ~ is an oriented
cuff of TI. The set of such pairs (II,7) is called the set of marked immersed
pants and denoted by IT*. The half-length hl(v) associated to the cuff v of IT
is defined as the half-length hl(C') associated to the cuff C' of 1.

Let v € T be a closed oriented geodesic in S. Denote by N'(v) the
unit normal bundle of v. Elements of N(v) are pairs (p,v), where p € 7
and v is a unit vector at p that is orthogonal to . The bundle N'(v) is a
differentiable manifold that has two components, which we denote by N1 (v)
and N!(v) (the right-hand side and the left-hand side components). Each
component inherits the metric from the geodesic , and both N1 (v) and N (v)
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are isometric (as metric spaces) to the circle of length 2hl(y). By dis we denote
the corresponding distance functions on N} () and N1 (v).

Let (p,v) € N'(v), and denote by (p1,v1) € N'(v) the pair such that
(p,v) and (p1,v1) belong to the same component of N'(v), and dis(p, p1) =
hl(v). Set A(p,v) = (p1,v1). Then A is an involution that leaves invariant
each component of N'(v). Define the bundle N'(,/7) = N'(v)/A. The two
components are denoted by N} (y/7) and N1(,/7), and both are isometric (as
metric spaces) to the circle of length hl(vy). The disjoint union of all such
bundles is denoted by N'(v/T).

We now define the foot of a pair of pants. Let II € IT be an immersed
pants and f : IIp — II the corresponding local isometry. Let C* denote an
oriented cuff of Il and v = f(C*). Let C; and Cy denote the other two cuffs of
Iy, and let p}, ph € C* denote the two points that are the feet of the shortest
geodesic segments in IIy that connect C' and C, and C' and Cy, respectively.
Let v} denote the unit vector at p) that is orthogonal to C' and points to-
wards the interior of IIy. We define v4 similarly. Set (p1,v1) = f«(p),v]) and
(p2,v2) = fu(ph,v5). Then (p1,v1) and (pa,v2) are in the same component
of N'(v), and the points p; and ps separate v into two intervals of length
hl(v). Therefore, the vectors (pj,v1) and (p2,vs) represent the same point
(p,v) € NY(vT), and we set

foot(T1,v) = (p,v) € N'(\/7).
We call the vector (p,v) the foot of the immersed pair of pants IT at the cuff ~.
This defines the map
foot : IT* — N (VT).

2.4. Measures on pants and the d operator. By M(II) we denote the
space of real valued Borel measures with finite support on the set of immersed
pants II, and likewise, by M(N'(vT)) we denote the space of real valued
Borel measures with compact support on the manifold N'(v/T). (A measure
from M*(N'(/T)) has a compact support if and only if its support is con-
tained in at most finitely many bundles N1(\/7) ¢ N}(vT).) By M*(II) and
MT(N'(VT)), we denote the corresponding spaces of positive measures.

We define the operator

9 : M(II) — M(NY(VT))
as follows. The set IT is a countable set, so every measure from p € M(II) is
determined by its value p(II) on every IT € II. Let IT € IT, and let v; € ', i =
0,1,2, denote the corresponding oriented geodesics so that (II,v;) € IT*. Let
all € M(N'(VT)) be the atomic measure supported at the point foot(TI, ;) €
N'(\/7), where the mass of the atom is equal to 1. Let

2
II 2 : II
(6 — ai 5
1=0
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and define
ou = Z p(ID)aM.

We call this the & operator on measures. If ;1 € M*(IT), then
dp € MT(NY(VT)),

and the total measure of 5,u is three times the total measure of p.

We recall the notion of equivalent measures from Section 3 in [4]. Let
(X,d) be a metric space. By M™(X) we denote the space of positive, Borel
measures on X with compact support. For A C X and § > 0, let

N5(A) ={x € X : there exists a € A such that d(z,a) < §},
be the d-neighbourhood of A.

Definition 2.1. Let pu,v € MT(X) be two measures such that u(X) =
v(X), and let § > 0. Suppose that for every Borel set A C X we have
u(A) <v(N;s(A)). Then we say that u and v are d-equivalent measures.

Remark. We observe that this definition is symmetric because v(A) <
1(Ns(A)) whenever pu(X \ Ns(A4)) < v(Ns(X \ Ns(A)).

In our applications X will be either a 1-torus (a circle) or R. In this case,
u(A) < v(Ns(A)) for all Borel sets A if it holds for all intervals A. We recall
that if © and v are discrete and integer valued measures that are e-equivalent,
then there is a “matching” between p and v that matches each point x to
a point within € of z. In other words, letting E, be {1,2,...,n} with the
counting measure, if y = f,E, and v = g,F, and p and v are e-equivalent,
then we can find o : E,, — E,, such that d(f(k),g(c(k))) < e for each k € E,,.
This holds when p and v are measures on any metric space (by the Hall’s
Marriage Theorem) and is even more elementary when the metric space is a
1-torus (i.e., a circle) or an interval.

We observe that if ¢ and v are €1-equivalent and v and p are ez-equivalent,
then p and p are (g1 + £2)-equivalent.

Let v € I and o € M(N'(y/7)). The bundle N'(,/7) has the two compo-
nents Ni(,/7) and N1(,/7) (the right-hand and left-hand side components),
each isometric to the circle of length hl(-y). The restrictions of « to N}r(\ﬁ)
and Ni(ﬁ) are denoted by a4 and a_ respectively. In particular, by 5+u
and 0_ 1 we denote the decomposition of the measure é,u.

Definition 2.2. Fix v € T, and let a, 8 € MT(N'(,/7)). We say that «
and (8 are d-equivalent if the pairs of measures a4 and 4, and a_ and S_, are

respectively d-equivalent. Also, by A(y) € MT(N'(,/7)), we denote the mea-
sure whose components \; () and A_() are the standard Lebesgue measures
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on the metric spaces NV 1(\ﬁ)+ and N 1(\ﬁ)*, respectively. In particular, the
measure A(7) is invariant under the full group of isometries of N'(,/7).

Let e, R > 0. By I': g C I" we denote the closed geodesics in the Riemann
surface S whose half-length is in the interval [R—e, R+¢]. We define I, p C II,
as the set of immersed pants whose cuffs are in I'; g. We will often call I'; g the
set of “good curves” and Il g the set of “good pants.” Our aim is to prove the
following theorem, which in turn yields the proof of Theorem 2.2 stated above.

We adopt the following convention. In the rest of the paper by P(R) we
denote a polynomial in R whose degree and coefficients depend only on the
choice of € and the surface S.

THEOREM 2.3. Let ¢ > 0. There exists ¢ > 0 (depending only on the
surface S and €) so that for every R > 0 large enough, there exists a measure
w € MHT(IL. g) with the following properties. Let v € Tc g, and let 5,u(7)
denote the restriction of Ou to NY (7). If 5@(7) is not the zero measure, then
there exists a constant K, > 0 such that the measures ou(v) and K A(vy) are
P(R)e~9%-equivalent.

Remark. We say that o € M(N'(,/7)) is 6 symmetric (for 6 > 0) if for
every isometry ¢ : N*(/7) = N'(,/7), the measures a and .0 are d-equi-
valent. If & and K, \(7y) are d-equivalent, then a is 20 symmetric because A(7)
is 0 symmetric.

The proof of Theorem 2.2 follows from Theorem 2.3 in the same way as
it was done in Section 3 in [4]. The brief outline is as follows. We may assume
that the measure p from the above theorem has integer coefficients. Then we
may think of y as a formal sum of immersed pants such that the restriction of
the measure Ay on any N 1(y/7) is P(R)e 9®-equivalent with some multiple of
the Lebesgue measure (unless the restriction is the zero measure). Considering
u as the multiset (formally one may use the notion of a labelled collection of
immersed pants) we can then define a pairing between marked immersed pants,
such that two marked pants (II1,7;) and (II,~2) are paired if v; = —v2, and
the corresponding twist parameter between these two pairs is P(R)e‘pR close
to 41 for some universal constant p > 0. After gluing all the marked pants we
have paired, we obtain the finite cover from Theorem 2.2.

3. Equidistribution and self-correction

In this section we introduce the Equidistribution Theorem (Theorem 3.1)
and the Correction Theorem (Theorem 3.4) and we use them to prove Theo-
rem 2.3. Theorem 3.1 follows from our previous work [4] and provides us with
an evenly distributed collection of good pants. The Correction Theorem allows
us to correct the slight imbalance (as described in the introduction) that may
be found in the original collection of pants.
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3.1. Generating essential immersed pants in S. Let us first describe how
we generate a pair of pants from a ©-graph. Let II denote a pair of pants
whose three cuffs have the same length, and let w : II — II denote the standard
(orientation preserving) isometry of order three that permutes the cuffs of II.
Let a and b be the fixed points of w. Let 79 C II denote a simple oriented
geodesic arc that starts at a and terminates at b. Set w’(y9) = ;. The union
of two different arcs 7; and ; is a closed curve in II homotopic to a cuff. One
can think of the union of these three segments as the spine of II. Moreover,
there is an obvious projection from II to the spine v = vy U 1 U 72, and this
projection is a homotopy equivalence.

Let p and ¢ be two (not necessarily) distinct points in S, and let ag, oy,
and ag denote three distinct oriented geodesic arcs, each starting at p and
terminating at ¢. We let o = apU oy Uaa. (We call a a ©-graph.) Let i(« ) €
TZ}S and t(a;) € quS denote the initial and terminal unit tangent vectors to o
at p and q respectively. Suppose that the triples of vectors (i(ay),i(1),i(a2))
and (t(ap),t(a1),t(az)) have opposite cyclic orders on the unit circle.

We define the map f : I — S by first projecting the pants II onto its
spine 7 and then by mapping ~; onto c; by a map that is a local (orientation
preserving) homeomorphism. Then the induced conjugacy class of maps fi :
m1(IT) — 71 (S) is injective.

Moreover, we can homotop the map f to an immersion g : II — S as
follows. We can write the pants IT as a (nondisjoint) union of three strips
Gy, G1, Go, where each G; is a fattening of the geodesic arc ;. Then we define
a map g; : G; — S to be a local homeomorphism on each G; by extending the
restriction of the map f on ;. The condition on the cyclic order of the «;’s at
the two vertices enables us to define g; and g; on G; and G respectively, so
that g; = g; on G; N G;. Then we set g = g;.

We say that g : I — S is the essential immersed pair of pants generated
by the three geodesic segments ag, a1 and as.

Often we will be given two geodesic segments, say oy and a7, and then
find a third geodesic segment s so as to obtain an essential immersed pair of
pants. We then say that as is a third connection. In this paper we will often
be given a closed geodesic C' on a Riemann surface S, with two marked points
p,q € C. Then every geodesic arc a between p and ¢ that meets p and ¢ at the
same sides of C' will be called a third connection, since then C' and « generate
an immersed pair of pants as described above. In particular, this represents
an efficient way of generating pants that contain a given closed geodesic C' as
its cuff.

3.2. Preliminary lemmas. Let T'H? denote the unit tangent bundle. El-
ements of T (H?) are pairs (p,u), where p € H? and u € TyH?. Sometimes we
write u = (p,u) and refer to u as a unit vector in T]}HQ. By T'S we denote
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the unit tangent bundle over S. For u,v € TI}HQ, we let ©(u,v) denote the
unoriented angle between v and v. The function ® takes values in the interval
[0, 7].

For L,e > 0, and (p,u), (¢,v) € T'S, we let Conn. 1((p,u), (q,v)) be the
set of unit speed geodesic segments 7 : [0,{] — S such that

e 7(0) =pand v(l) = ¢;
. ‘l - L| <g¢;
e ©(u,7(0)),0(v,7(I)) <e.

The next lemma will be referred to as the Connection Lemma. It provides
a good lower bound on the size of the connection set we have just defined. This
lemma also follows from discussion in the appendix.

LEMMA 3.1. Given € > 0, we can find Ly = Lo(S, ) such that for any
L > Ly, and any two vectors (p,u) and (q,v), the set Conne,L((p,u), (q,v)) is
nonempty and

[Conn. 1 ((p, w), (q,0))| > €10,

Proof. By dis we denote a distance function on T'S. (We define dis ex-
plicitly later in the paper.) The unit tangent bundle 7S is naturally identified
with G\PSL(2,R), where G is a lattice. Then we can find a neighbourhood U
of the identity in PSL(2, R) so that if (¢,v) € T'S = G\PSL(2,R) and ¢ € U,
then dis((q,v), (¢,v) - §) < 13-

We let ¢ : U — [0,00) be a C*° function with compact support in U, with
Jy¥ = 1. For any (q,v) € T'S, we let Ny(q,v) = {(¢g,v) -s: s € U}, and
we let 1g.0)((q,v) - 5) = ¥(s) on Ny(q,v). (If € is small, then s — (q,v) - s is
injective.) The C* norm of Y(q,0) is independent of (g, v).

Let g; : T'S — T'S be the geodesic flow. By uniform mixing for uniformly
(C*° functions on S,

(1) / w(q,v) (gt(xa w))w(p,u) ('T7 w) d<$7 w) — 1,

TS

uniformly in (p,u) and (g, v), as t — co. (We always assume that the Liouville
measure is normalized so that the total measure of the tangent bundle is
one.) If gy (9¢(2, w))Ypuy (x, w) > 0, then (x,w) € Ny(p,u) and g;(z,w) €
NU((],U).

The segment gjg (7, w) is e-nearly homotopic (see the definition after this
proof) to a unique geodesic segment « connecting p and ¢q. The reader can
verify that a € Conn. (((p,u), (¢,v)). We let Eo: C Ny(p,u) be the set of
(z,w) for which g;(z,w) € Ny(q,v), and gjo4(x,w) is e-homotopic to a. Then
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by (1),
S [ e 000 (@ w) i 0) = 1+ 0(1).

@ Ea,t
On the other hand, we can easily verify that V(E,:) < K(¢)e~". (Here
V(FEq,) is the volume of E,;.) Hence

| Yoo w)vg @) dew < [ s daw
Eat

Eat
< K(p)e.

So the number of good « is at least K (¢)e!, as long as t is large given S
and e. (]

Definition 3.1. Let E > 0. We say that two paths A and B in H? are
FE-nearly homotopic if the distance between the endpoints of A and B is at
most E. Two paths on the closed surface S are E-nearly homotopic if they
have lifts to H? that are E-nearly homotopic.

The following lemma gives the estimate for the number of good pants that
are bounded by a given (good) cuff.

LEMMA 3.2. Let 0 <e < 1. Welety e I'.r and let II. r(y) denote the
set of pants in Il. g that contain v as a cuff. Then

T r(7)| = Re™,
where the constant for < depends only on S and €.

Proof. For the upper bound, let F, denote a set of [2R] evenly distributed
points on 7. If II € II; g and if v € JII, we let a be the geodesic segment in
IT that is orthogonal to 7 at its endpoints and simple on II. Then we let o
be a geodesic segment connecting two points of F,, such that o is %—nearly
homotopic to «, and hence 1(a/) < 1(«) + 1. It can easily be verified that the
length of « is at most R + 9, thus the length of o’ is at most R + 10.

We leave it to the reader to verify that the number of geodesic segments
of length at most L that connect two given points on the closed surface S is
at most efttdiam(S) / Ayea(S).

If two pants produce identical o, then the two pants are the same. Be-
tween any two points of I, there are at most Ne® such arcs o/ (the constant
N depends only on S), and the endpoints of o’ are R £ 1 apart, so the total
number of such arcs is at most 10N Re’.

For the lower bound: By Lemma 3.1 we can find N(S,¢)ef geodesic seg-
ments & connecting two given diametrically opposite points of 7, of length

within 155 of R+log4, and such that the angle between & and « is within 155
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of 7. Here we assume that the two vectors (at the two diametrically opposite
points) at v that are tangent to & are on the same side of . Then to any
such & there is an {5-nearly homotopic o with endpoints on v (homotopic on
S through arcs with endpoints on 7) and such that « is orthogonal to . Each
such o produces a pair of pants II € II. g that contains 7 as a cuff.

Different «’s give different pants. Two @ with the same « must have
nearby endpoints along v and be 10e-nearly homotopic. So we get at least

2RN(S,¢)
10e ¢

of the a’s and hence of the pants. O

Remark. Let M > 1, and let X (M) denote the number of pants in
IL r(7y) whose two other cuffs are in I' = p. Then X, (M) =< Re®. The upper
bound follows from the upper bound of the lemma. If the segment & is of
length within 5657 of 2R — hl(y) + log4 and if the angle between & and 7y
is within 155 of 7, then the induced pants have the desired property that the
other two cuffs are in Fﬁ, gr- On the other hand, it follows from the Connection

Lemma that the number of such @’s is =< to N(S,e, M)ef for some constant
N(S,e, M).

3.3. The Equidistribution Theorem. The following is the Equidistribution
Theorem. This is a stronger equidistribution result than the one proved in our
previous paper [4].

THEOREM 3.1. Let € > 0. Let pu be the measure on Il. g that assigns to
each pants in II. g the value 1. Then for R large enough, the measure p has
the following properties:

(i) p(TTg) = &3,
(ii) for every v € I'c g, the measure dp(v) is Ce 1R equivalent to quf)\i(v)
or some constants KAY+ and K that satisfy the inequality

_l’_
X 1

5
where C,q > 0 depend only on S and ¢;

< Ce 1,

(iii) moreover, Kﬂf =< Relt for v € T g.

Proof. The well-known result of Margulis [5] asserts that

o2R

N

Claim (i) of the theorem follows from this estimate and Theorem 3.2. Claim (iii)
follows from claim (ii) and Lemma 3.2. Thus, it remains to prove (ii). To
prove (ii) we need be able to estimate the number of good pants that bound
gamma and whose feet belong to a given interval of . Moreover, we need to

Fs,R‘ =

show that the number of such pants that are to the left of + is very close to
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the number of such pants that are to the right of v. We first explain how to
effectively estimate the two numbers.

Let m and 72 be two geodesic arcs on S that connect the same two points
on S. Denote by [- 1 -n2- | the corresponding closed broken geodesic on S. (See
the second paragraph of Section 4.1 for more on this notation.) We assume
that 71 and 72 meet at the right angles and that we can orient [-7; - 172-] so
that both right turns are “to the right” or both right turns are “to the left.”

Let «y be the closed geodesic freely homotopic to [- 71 - 72-]. Then we can
write

() = h(l(m),1(n2))
for some smooth symmetric function h (where I denotes the length function),
for which
he1,ez) = €1 + ey — log 2 + O(e™ ™n(en.e2)/2)

(The function h can be computed explicitly from the basic formulas in hyper-
bolic geometry.)

Suppose that 7 is a (good) closed geodesic on S, and suppose that 7 is
a “third connection” for 7. So 7 is a geodesic segment that meets v at two
points x and y, and is orthogonal to v at = and y, and lies on the same side
of v at both points: the two normal vectors to v pointing into 1 at x and y
are on the same component of N'(vy). Then there is a unique pair of pants IT
for which v € OII and for which n is an orthogeodesic on II that lifts to be
embedded in II. Letting o1 and oy be the two segments of v \ {z,y}, we find

:I:l.]

that the two other cuffs 1, v2 of II are freely homotopic to [-o; - 1 . So we

have

1(7i) = h(l(n),1(04)),
where h is defined as above. Moreover, the two feet of Il on v lie at the two
midpoints of x and y on v. (Really, we should think of z and y as lying on the
parametrizing 1-torus for ~, and likewise the feet, but we will say that they
are on v, by a mild abuse of notation.)

Suppose that I ¢ N 1(\ﬁ) is an interval. So I comprises a choice of
component of N!(v)—a side of y—along with a pair of intervals in v, of equal
length and placed halfway along v from each other. We should think of v as
long, say longer than 10, and I as short, say shorter than 1/10.

We define the region

R(y,I) CyxvyxRF
as the set of (x,y,1) for which
h(l,s;) € 2R — 2¢,2R + 2¢]

and for which the two midpoints of x and y lie in the two intervals on -y
associated to I. Here s1,s9 are the lengths of the two arcs in v between x
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and y. Then suppose n is a third connection for v and that 7 lies on the
same side of v as I does. Let x and y be the endpoints of 7, and let II,, be
the associated pair of pants for n (and ). Then (z,y,l(n)) € R(y,I) if and
only if I, is a good pair of pants, and the pair of feet of II, on Nl(\ﬁ) lies
in I. Thus, the number of good pants whose feet belong to the interval I is
equal to the number of third connections 1 (on a given side of «y) for which the
associated triple (z,y,1(n)) lies in R(~,I). So our goal is simply to count the
number of third connections 1 (on a given side of ) for which the associated
triple (x,y,1(n)) lies in R(~, I).

One can see that the volume of R(v, I) is on the order of £2|I| as follows.
For any choice of a point in I, z and y are determined by sy, and possible
pairs ([, sg) lie in a diamond of size about €. Since the area of the diamond is
about &2, it follows that the volume of R (7, I) is about &2|I|.

If we denote by C., the set of associated triples (x,y,l(n)) for all third
connections 7, our goal is simply to count C,NR(7, ). The following counting
formula is the main ingredient we need to finish the proof.

Let A and B be two oriented geodesic segments on S of lengths a > 0 and
b > 0 respectively, and let 0 < Ly < Ly. Define

CODHAB(L(), Ll)
to be the set of geodesic connections between A and B. That is,
ne CODDAB(LO,Ll)

if n is a geodesic segment on S of length at least Ly and at most L; such that n
connects the right side of A and the left side of B and is orthogonal to the arcs
A and B. (nis an orthogeodesic connecting the appropriate sides of A and B.)
The following theorem is stated and proved in the appendix as Theorem 11.3.

THEOREM 3.2. There exist constants C = C(S),q = ¢q(S) > 0 with the
following properties. Let 6 = e~ and suppose a = b = 62. Then

2\ _ 1 6 L
#CODHA}B(L,L—}—(S ) = 87‘(27><(S)6 € (1+O(5))

This type of counting result appears often in literature (for example, see
[3] [6]), and it goes back to Margulis [5].

Now let @ be any cube of the form J; x Jo x [Lg, L1] C v x v x RT, with
|Ji| = |J2| = Ly — Lo = 62 (and suppose Lg, L1 are about R that is large).
Then Theorem 3.2 implies

#(QNCy) = Esd®e" (14 0(5))
= (14 0(9)) /Q Ese dx dydL,
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where
1

~ 8r8x(8)]
It follows that for any region R C v x v x [R — 1, R + 1] tiled by such
cubes,

Es

#RNCy) = (1 +0(5))/ Esel de dydL
R
and, more generally, for any region R C v x v x [R—1, R+ 1],
#(RNCy) = (1+0(5)) (/ Esel dx dydL + /
R Niys2 (OR

where N352(OR) is the neighbourhood of OR. (Here A + B means a number
in [A—B,A+ B].)
Now let R = R(v, I) and assume that ¢ > |I| > §. Then

Vol(N352(R)) & €26% = O(3Vol(R)).

FEge® dx dy dL) ,

Therefore,
#RNC,) = (1 + 0(6)) /REseL dx dy dL ~ ef?|I|.
On the other hand,
/ Ese® dxdydL = K., |I|
R(v.1)

for some K. > 0 because the integral clearly depends only on |I| and

[
R(’%I) R(’lel) R(77]2)

where I, I is a partition of I.
Therefore,
#(R(7,1) N Cy) = K, |1|(1+0(5))

for every interval I of length at least ¢, and claim (ii) of the theorem follows. [

3.4. The Good Correction Theorem. To prove Theorem 2.3 we need to
produce a measure p on good pants such that for each good geodesic ~, 5,u('y)
is P(R)e~9%-equivalent to some K\ (), where X is the Lebesgue measure on
N'(v). In particular, u() must have the same total measure on both sides
of v. In other words, there must be the same number of pants on both sides
of v. We can write this as du(y) = 0.

Now let us construct the measure pp on good pants as the counting
measure on the good pair of pants. Theorem 3.1 says that 5p(7) is Ce ek
equivalent to K\, (v), with

K+
’1 — 1| < Ce 7,
K’Y
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So we have the desired equidistribution on each side of v, and we have a small
discrepancy between the number of pants on the two sides of v. What we want
to do is to make a small change in the number of each pair of good pants in
order to correct the discrepancy. So we want to replace pg with pg + X where
0X = —0up and X is small compared to py.

To do this we consider the more general problem of finding X such that

(2) 0X = «,

and we ask two questions:

1. For which « can we solve (2)7
2. What bound can we get on the size of X given a suitable bound on the
size of a?

It turns out that we can get fairly sharp answers for both questions. First,
if 0X = «, then @ = 0 in H;(S); we will prove that we can always solve
0X = a when « is zero in singular homology. Second, if v is a single good
closed geodesic and 0X = ~, then

| X|({IT : v €011} > 1,

and therefore
1
Xl > oo

We prove that we can solve 9X = « such that
[ X]|oo < P(R)eiRHozHoo

for some polynomial P(R) depending on S and €. These two results are stated
essentially as Theorems 3.4 and 3.5. The proof of these theorems will be the
object of the remainder of this paper.

Having proven these theorems, we can correct the discrepancy and prove
Theorem 2.3.

We let u1 = po + X, where 0X = —9ug, and

1X[oo < P(R)e™||0p10]|
< 1.

Then py is a positive sum of good pants, has the same number of pants of both
sides of every closed geodesic, and has the same equidistribution property as
1o because it is a small perturbation. Therefore, it satisfies the conclusions of
Theorem 2.3, and we can use it to build a good cover.

Recall that if A is an Abelian group and X any set, then AX is the group
of A-weighted finite formal sums of elements from X.
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Definition 3.2. Let sg,s1 € RI'; g, and let M > 1. We say that sy = 51 in
IT/c r homology if there exists W € RIIz. g such that OW = s; — sq.

The following theorem summarizes the main idea of this paper. It implies
that every sum of good curves that is zero in the standard homology is the
boundary of a sum of good pants. That is, if sg,s1 € RI'; g and sg = s1 in the
standard homology on the surface S, then sy = s; in Il390., g homology. By
H;(S) we denote the first homology on S with rational coefficients.

THEOREM 3.3. Let € > 0. There exists Ry = Ro(S,e) > 0 such that for
every R > Ry, the following holds. There exists a set H = {h1,...,hag} C
QI'; g that form a basis of H1(S), such that for every v € I'c g, there are
a; € 7 so that

2g
v=> ahi
i=1

in I300c, R homology.
Remark. Observe that if v = 0 in Hy(S), then v = 0 Il300., g homology.

The proof of this theorem occupies the primary text of Sections 4-9. But
to prove the Ehrenpreis Conjecture we require the following stronger result.

THEOREM 3.4. Let € > 0. There exists Ry > 0 (which depend only on
S and €) such that for every R > Ry, there exists a set H = {hq,...,hog} C
QI'c g and a map ¢ : I'c p — QII300c, R Such that

(i) hi,...,hog is a basis for Hy(S);

(i) 9(¢(v)) —~ € ZH;
(iii) Yyer, x (V) AD] < P(R)e~ " for every 1 € M300: r, where the polynomial
P(R) depends only on S and ¢.

Remark. Note that the map ¢ depends on € and R, so sometimes we write

¢ = ¢c,R-
Remark. An inequality of the form
Y la(nm) <A
v€le,r
is equivalent to saying
lla(@)loo < Alla]|o
for all a € QI'; g.

Remark. Observe that (i) and (i) imply that d¢d = 9.

The existence of the function ¢ that satisfies conditions (i) and (ii) follows
from Theorem 3.3. Condition (iii) will be proved using our randomization
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theory (see Appendix 1). As we go along, after every relevant homological
statement we make randomization remarks. Theorem 3.4 then follows from
these randomization remarks, as we explain at the end of Section 9.

Remark. Estimate (iii) in the statement of the theorem can be reformu-
lated as follows. Consider the standard measures or on I'c g and o1 on 30, -
Then the map ¢ is P(R)-semirandom with respect to op and opy. See the ap-
pendix for definitions of the standard measures and the notion of semirandom
maps.

The image of ¢ lies in II300., g, and we want it to lie in I, g, so we require
the following: Let M > 1. The following lemma states that any curve v € I'c g
is homologous to some s € ]RF%7 r in II. g homology.

LEMMA 3.3. Let e, M > 0. Then there exists Ry > 0 such that for every

R > Ry, we can find a map qp = q : Te g — QI g such that

(i) for every v € T'c r, q(7) is a positive sum of pants, all of which have v as
one boundary cuff (with the appropriate orientation), and two other cuffs
inT'< g, and v —9q(7) € QU= g;

(i) for every Il € Il. g, we have

K _
> e < e
7€FS,R
for some constant K = K(S,e, M) > 0, where q(v)(IT) € Q" is the coeffi-
cient of IT in q(7).

Proof. Tt follows from the remark after Lemma 3.2 that the number of
pants that have v as one boundary cuff and two other cuffs in I'_ r is of the
*M

order Re®. Let g(7y) be the average of these pants. (The average of a finite set
S is the formal sum of elements from S where each element in the sum has the
weight |—é|) The inequality in condition (ii) follows from the fact that for any
IT € IT; g, the sum
> latn),
Y€l R
has at most three nonzero terms. O

We can now state the following improved version of Theorem 3.4. This
new theorem is exactly the same as the previous one except that the new
function ¢, which is denoted by ¢new, maps I'c g to QII; g whereas the old ¢

maps I'c g to QII3g0c g-

THEOREM 3.5. Let € > 0. There exists Ry > 0 (which depend only on S
and €) such that for every R > Ry, there exist a set H = {hy,...,hag} C QI'c g
and a map ¢new : I'e p — QI g such that



20 JEREMY KAHN and VLADIMIR MARKOVIC

(i) hi,...,hog is a basis for Hy(S);
(i) O(¢new(V)) — € ZH;
(iil) Yqer.  [Pnew(v)AD] < P(R)e %, where the polynomial P(R) depends
only on S and €.

Proof. We extend the function ¢ to RI'; g by linearity. For y€I'. g, we let
Pnew (V) = ¢(v — 9a(7)) + a(v),

where ¢ is from the previous theorem and ¢ = g3 is the improvement function
from Lemma 3.3. Then since H is a generating set for H;y(S), it follows that
O(Pnew (7)) = 9(é(7)), and thus we obtain O(ppew(y)) — v € ZH. It remains
to verify inequality (iii) of the theorem.

For each II € Il g, we have

(3) > |bnew())] < 3 la(n)D)] + 3 [6(y — dg(1)([)|.

y

On the other hand, for each n € I'c g, we have the inequality
> [oatnm)| < &
5

for some universal constant C; > 0. In other words, the total weight of 7 in
the formal sum of curves

Z aCI(rY) € QFE,R
vy

is at most Cy. This follows from the last inequality of Lemmas 3.3 and 3.2.
Thus, we have

S Jey = da(n) )| < 3 o) )] + €1 3 |e(m) ).
Y ol Yy

We replace this inequality in (3), and the theorem follows. O

Of course ¢new extends linearly to QI'c . We observe that if v is zero
in H1(S), then O¢new(7y) is equal to v because O(pnew(y)) — v € ZH and
O(Pnew (7)) differs from v by a boundary. In particular, for any p € QII, g,
the equality

OPnewOp = O
holds.

3.5. A proof of Theorem 2.3. First we state and prove the following lemma
about equivalent measures on the circle R/2RZ, where R > 0 is a parameter.
Recall that A denotes the Lebesgue measure on the circle R/2RZ.

LEMMA 3.4. If a is 0-equivalent to K\ on R/2RZ, for some K > 0, and
B is a measure on R/2RZ, then a+ 3 is (% + 0)-equivalent to (K + |2£R|)/\ on
R/2RZ.
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Proof. Recall the definition of §-equivalent measures from the previous
section. We need to prove that (a+8)(I) < (K IBI )|Ng (I)], where §' = 5+ é@,
for any interval I such that ¢’ neighbourhood of I is a proper subset of the
circle R/2RZ.

We have

(a+ B)D<K(|I] +26) + |7]

g(mlﬂi) (II\+25+W>
= (10 53 boen) .

We give the following definitions. To any measure o € M(N'(,/7)) we
associate the number |o|(y) = oy (7)| + |a—(7)]-

We proceed with the proof of Theorem 2.3. Let i be the measure on Il. g
from Theorem 3.1. Define the measure p on II. g by letting 1 = p — ¢(9p),
where ¢ = @pew is from Theorem 3.5. We show that p; is the measure that
satisfies the conclusions of Theorem 2.3.

As observed before, du1 = 0. It remains to show that 9y (v) is P(R)e 98-
equivalent to some multiple of the Lebesgue measure on N 1(\ﬁ) Recall from
Theorem 3.1 that the measure dxpu(y) is Ce 9 equivalent to K$Ai(fy) for
some constants Kj and K that satisfy the inequality
< Ce 98

K+
4) ’1 .
K’Y

and recall that Kiﬁ = Reft. Then for all v, from (4) we get

(x| < ORI,
which together with Theorem 3.5 yields the inequality
|6(On)|(IT) < P(R)e™"
for each pair of pants II, and we obtain
06(0u)| () < P(R)el' 0"

for all v. Since K$ = Ref*, we conclude from Lemma 3.4 that 5u1(fy) is
P(R)e~ " equivalent to some multiple of the Lebesgue measure A(y) on N1(,/7),
and we are done.

4. The theory of inefficiency

In this section we develop the theory of inefficiency. This theory supports
the geometric side of the correction theory that is used to prove our main
technical result the Good Correction Theorem.
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Before we begin with the estimates of this section, we will provide a brief
overview of the remainder of this paper. Our goal is to prove identities in the
good pants homology, which means that we need to generate a formal sum of
good pants whose boundary is a certain given formal sum of good curves. How
do we generate a pair of good pants?

We generate a pair of good pants by constructing a ©-graph made out
of geodesic segments; the Connection Lemma insures that we have enough
geodesic segments with the desired properties, and the Theory of Inefficiency
allows us to estimate the length of the cuffs of the associated pair of pants in
terms of the length of the geodesic segments and the angle at which they meet.

In every identity we prove in the good pants homology, we will state our hy-
pothesis in terms of the Theory of Inefficiency, and every time we estimate the
length of a geodesic segment or a closed geodesic, we will use this theory as well.

4.1. The inefficiency of a piecewise geodesic arc. By T'H? we denote the
unit tangent bundle of H2. Elements of T'H? are pairs (p,u), where p € H?
and u € Tpl]HIQ. For u,v € Tpl]HIQ, we let ©(u,v) denote the unoriented angle
between u and v. Let « : [a,b] — H? be a unit speed geodesic segment. We
let i(a) = o/(a), and t(a) = /().

Let aq,...,a, denote oriented piecewise geodesic arcs on S such that the
terminal point of «; is the initial point of a;y1. By ajas. .. a, we denote the
concatenation of the arcs «;. If the initial point of oy and the terminal point
of av, are the same, by [ajas ... a,] we denote the corresponding closed curve.

We define the inefficiency operator as follows. We first discuss the inef-
ficiency of piecewise geodesic arcs and after that the inefficiency of piecewise
geodesic closed curves.

Definition 4.1. Let « be an arc on a surface. By v we denote the geodesic
arc with the same endpoints and homotopic to a. We let I(a) = 1(a) — 1(7y).
We call I(«) the inefficiency of a. (The inefficiency I(«) is equal to 0 if and
only if « is a geodesic arc.)

We observe the monotonicity of inefficiency. Let a, 3,7 C H? be three
piecewise geodesic arcs in H? such that a3~ is a well-defined piecewise geodesic
arc. Then I(afvy) > I(B). This is seen as follows. Let n be the geodesic arc
with the same endpoints as a7, and let 3’ be the geodesic arc with the same
endpoints as 8. Then

I(apy) =1(aBy) — 1(n)
> 1(afy) = laf'y)
=1(8) - 1(8")
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We also define the inefficiency function of an angle § € [0, 7] as follows.
Let as and Bs be two geodesic rays in H? that have the same initial point,
such that 6 is the exterior angle between ao, and . (Then 6 is also the
bending angle of the piecewise geodesic ay!By.) We want to define I(6) as
the inefficiency of a3 Bs, but since the piecewise geodesic a !B is infinite
in length, we need to prove that such a definition is valid.

Consider a geodesic triangle in H? with sides A, B and C, and let § > 0 be
the exterior angle opposite to C. (We also let 1(A) = A, I(B) = B, 1(C) =C.)
Then

cosh C' = cosh A cosh B + cos § sinh Asinh B

and, therefore,

cosh C' B cosh A cosh B sinh A sinh B
ATB — oA B + cos 6 ” -

We conclude that

e

cosh C 1

W — Z(COSH“‘ 1),
when A, B — oco. Since

cosh C' 1

- -, C =00
eC 27 Y

we get
9 2
048 (cos 5) ,
and therefore

0
A+B—C’—>210gsec§.

Let r,s > 0, and let . be the geodesic subsegment of a, (With the same
initial point) of length r. Similarly, 8 is a geodesic subsegment of (o of
length s. Then we let

16) = I(a3x 8) = lim_I(a7'By).
It follows from the above discussion that t7his limit exists and
(5) I(0) = 2logsec g
4.2. Preliminary lemmas. We have the following lemma.

LEMMA 4.1. Let a denote an arc on S, and let v be the appropriate ge-
odesic arc with the same endpoints as o and homotopic to a. Choose lifts
of a and v in the universal cover H? that have the same endpoints, and let
m: o — 7y be the nearest point projection. Let

E(«a) =supd(z, m(x)).

reo
Then
I
E(a) < (;) + log 2.
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L~ Lt
Figure 1. The case where v is an arc

Proof. Let E > 0. The minimally inefficient arc « (which has the same
endpoints as v and is homotopic to «y) that is at the distance E from = is given
in Figure 7. Here 7 is divided into two subsegments of length L™ and L™. Let
A~ =1(a”) and AT = 1(a™). By the monotonicity of inefficiency, and using
the inefficiency for angles, we have

E+L‘—A‘<I<g>

and

E+Lt—At <I(g).

Summing up yields

I(«) (7‘() I(«)

— 4+ ]| =] =—=+1og2
5 T3 g T108%

since by (5), we have I(5) = log 2. O

E <

The following is the New Angle Lemma.

LEMMA 4.2 (New Angle Lemma). Let 6,A > 0, and let a8 C H? be a
piecewise geodesic arc, where « is piecewise geodesic arc and B is a geodesic
arc. Suppose that v is the geodesic arc with the same endpoints as afS. There
exists L = L(0,A) > 0 such that if 1(8) > L and I(af) < A, then the

unoriented angle between v and 8 is at most 6.

Proof. Denote by 0 the angle between v and 3, and let h be the distance
between the other endpoint of 5 and . Then

sinh(h) _
= sinh(1 .
The lemma follows from this equation and the fact that A is bounded in terms
of I(ap) (see Lemma 4.1). O
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We also have

LEMMA 4.3. Suppose that afBy is a concatenation of three geodesic arcs in
H?, and let Oap and Og, be the two bending angles. Suppose that 0,45,05, < 5.
Then

I(aBy) < log(sec(fap)) + log(sec(f,)).

Proof. Let 11 be the geodesic that is orthogonal to 5 at the point where
« and § meet. Similarly, let 12 be the geodesic that is orthogonal to [ at the
point where S and v meet. Let A, be the geodesic arc orthogonal to 71 that
starts at the initial point of «, and let A be the geodesic arc orthogonal to 72
that starts at the terminal point of ~.

Let n be the geodesic arc with the same endpoints as afy. Then 1(n) >
1(Aa) +1(8) +1(A,).

On the other hand, from the hyperbolic low of sines, we have
sinh A, = sinh a - cos 6,3,

and hence
log sinh a — logsinh A, = logsec 0,3,
which implies
a — Ay <logseclyg,
because the derivative of logsinh is greater than one. Thus, we have proved
that 1(As) > 1(«) — log(sec(fng)), and similarly 1(A4,) > 1(y) — log(sec(f3y)).
So

I{afy) <1(e) +1(7) = 1(4a) — 1(4,)
< log(sec(fnp)) + log(sec(fgy)). O

4.3. The Long Segment Lemmas for arcs. We now state and prove several
lemmas called the Long Segment Lemmas. The following is the Long Segment
Lemma for angles.

LEMMA 4.4 (Long Segment Lemma). Let § > 0,A > 0. There exists a
constant L = L(5,A) > 0 such that if o and ( are oriented geodesic arcs such
that I(af) < A (assuming that the terminal point of « is the initial point of

8) and (@),1(8) > L, then I(af) < I(®(t(a),i(8))) < I(afB) + 6.

Proof. The left hand-side of the above inequality follows from the mono-
tonicity of inefficiency. For the right-hand side, let ay and [ denote the
geodesic rays whose initial point is the point where o and 8 meet and that
contain o and 3 respectively. (We also assume that a, has the same orienta-
tion as a and B the same orientation as 3.) Recall that I(ceoSoo) Was defined
just above formula (5). Let n be the geodesic arc with the same endpoints as
af, and let 1 be the geodesic ray with the same endpoints as as3. By 09 we
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n

Figure 2. The Long Segment Lemma

denote the angle between o and 7, by 6; the angle between 1 and 3, and by
05 the angle between 1 and 7.
We observe that 6, 61, and 2 are small (by the New Angle Lemma), and
therefore
I(Ozooﬂoo) < I(CVOOB) + 1(91 + 02)

< I(af) + I(6p) + 1(01 + 02)

<I(af)+o(1),
where o(1) — 0 as L — oc. O

The following is the Long Segment Lemma for arcs.

LEMMA 4.5 (Long Segment Lemma for arcs). Suppose we can write n =
afy, where a and v are piecewise geodesic arcs and 3 is a geodesic arc of
length I. Then

|1(aB) + 1(By) = I(aBy)| = 0
uniformly when | — oo and I(af) + I(B7) is bounded above.

Proof. If we replace o and y by the associated geodesics arcs, then I(af)+
I(Bv) — I(afBy) will be unchanged, and I(«af)+ I(37) will be decreased, so we
can assume that « and v are geodesic arcs. We divide 8 at its midpoint into
B~ and ST, so B = 8787, and a8y = af~STy. We will show the following
estimates (for d small when [ is large and I(af) 4+ I(87) is bounded above):

(i) [I(aB™) + 1(8) = I(aBy)| <o,
(if) |7(aB) + I(aB7)| < 4,
(i) |7(87) +1(8%7))| < 6.
The lemma then follows from (i), (ii), and (iii).
For (i), we refer to Figure 2. We find that

0 < I(@B) = I(aBy) — I(aB~) — I(B*7).
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Moreover, when I(a37) (which is at most I(af3)) and I(8"v) (which is at
most I(37)) are bounded above, and 1(37) = 1(3") = Tﬁ) is a large, then 6~

and 67 are small (by the New Angle Lemma), so I(&3) < I(6~ +6") is small.
Likewise, I(af) — I(aB™) = I(af™) and 0 < I(af*) < I(#~). This proves (i)
and (ii), and (iii) is the same as (ii). O

4.4. The inefficiency of a closed piecewise geodesic curve. Let aq,...,ay,
denote oriented piecewise geodesic arcs on S such that the terminal point of
«; is the initial point of ;1. By a1ase...a, we denote the concatenation of
the arcs a;. Assume that the initial point of a; and the terminal point of «,
are the same. By [a1aq. .. ay,] we denote the corresponding closed curve.

We define the inefficiency operator as follows.

Definition 4.2. Let a be a closed curve on a surface. By v we denote
the appropriate closed geodesic that is freely homotopic to . We let I(a) =
l(a) — 1(ry). We call I(«) the inefficiency of . (The inefficiency I(«) is equal
to 0 if and only if « is a closed geodesic.)

The following is a closed curve version of Lemma 4.1.

LEMMA 4.6. Let o denote a closed curve on S, and let v be the appro-
priate closed geodesic freely homotopic to a. Choose lifts @ and v, of o and
v respectively, in the universal cover H? that have the same endpoints. The
nearest point projection T : & — 7 descends to the map w: o — y. Let

E = E(a) = supd(z,7(z)).
reo

Then providing 1(a) > Lg for some universal constant Lo, we have

I
E< (;) +1.
Proof. The minimally inefficient closed curve a that is freely homotopic
to v and the distance F from « is given in Figure 3. Denote by 7 the corre-
sponding geodesic segment of length E. Then by the Long Segment Lemma

and monotonicity of inefficiency,

Ipyn™) < I(py) + 10y ") + %

1
<1(3)+1(3)+7
+ + 7
<2,
providing that 1(y) > Lo, where Ly is a universal constant. Hence
(@) = 1(v) = 21(n) —

or

ESI(;)—Fl. ]
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Figure 3. « is the minimally inefficient curve with 1(n) = E

The following is the Long Segment Lemma for closed curves.

LEMMA 4.7 (Long Segment Lemma for closed curves). Let o be an piece-
wise geodesic arc and 3 a geodesic arc on S, such that the initial point of «

1s the terminal point of B and the initial point of B is the terminal point of .
Then

[([ap]) — I(BaB)| <6,

where § — 0 when 1(B) — oo and I(Baf) is bounded above.

Proof. The proof is similar to the proof of Lemma 4.5 and is left to reader.
O

4.5. The Sum of Inefficiencies Lemma. The following is the Sum of Inef-
ficiencies Lemma. Let S denote a closed hyperbolic Riemann surface

LEMMA 4.8 (Sum of Inefficiencies Lemma). Let e, A > 0 and n € N.
There exists L = L(e,A,n) > 0 such that the following holds. Let av,. .., apn41
= a1, B1,-.., 0 be geodesic arcs on the surface S such that a1f1a00s . .. a0y,
is a piecewise geodesic closed curve on S. If I(a;fiaiv1) < A and 1(«a;) > L,
then

I([a1Brazfa ... anB]) = D I(aificipr)| < e.

i=1
Proof. 1t directly follows from the Long Segment Lemma for closed curves.
O
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Remark. In particular, we can leave out the 5’s in the above lemma and
write

S,

I([a1a2 N Oén]) - Z I(aiaHl)

‘ n
=1

providing that I(o;;41) < A and 1(ey;) > L. Moreover, by the Long Segment
Lemma for Angles (for L large enough), we have

I([oag ... ap)) — ZI(GZ')

=1

< Zg,

’ n

where 0; = O(t(w), i(qit1)).

A more general version of the Sum of Inefficiencies Lemma is as follows.
(The proof is the same.)

LEMMA 4.9. Let ¢, A > 0 and n € N. There exists L = L(e,A,n) > 0
such that the following holds. Let

A1y ..., 0py1 = O

and

6117“'7ﬁ1j17"'7ﬁn17"‘76’njn

be geodesic segments on S such that a1B11 ... 814 - anBni ... Bnj, 15 a piece-
wise geodesic closed curve on S. If I(a;fiair1) < A and (o) > L, then

n
I([a1Bi1-- - Bijy - onBur - Brj ) = > It ... Bijiaig1)| < €
i=1
Proof. Tt directly follows from the Long Segment Lemma. O

We will use the theory of inefficiency for two purposes: first, to control the
geometry of piecewise geodesic arcs and closed curves, and second, to precisely
estimate the length of the associated geodesic arcs and closed curves.

For example, suppose that [a, (] is a closed curve, that « and  meet
nearly at right angles at the two places they meet, and that o and § are both
long. Then 1(v) is close to 1(a) + 1(8) — log4 where 7 is the corresponding
closed geodesic.

As a second example, suppose a1, as, a3 is a piecewise geodesic arc, and
let 12 be the geodesic arc homotopic rel endpoints to ajas. Likewise, define
o3 and aqo3. Then

Wai23) = l(a1) + az) + Nas) + I(a12) + I(a2s),

provided that I(aj2), I(aes) < A and 1(ae) > L(A).
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5. The Geometric Square Lemma

In this section we will prove the Geometric Square Lemma (Lemma 5.4),
which will then be reformulated as the Algebraic Square Lemma in the next
section. This section is probably the hardest and most technical section in
the paper, and the reader who is still struggling to have a clear idea of where
we are going may wish to skip to the next section and see how the Algebraic
Square Lemma follows from the Geometric one.

From now on we can think of the surface S as being fixed. We also
fix & > 0. However, for the reader’s convenience we always emphasize how
quantities may depend on S and ¢.

5.1. Notation and preliminary lemmas. By an oriented closed geodesic C
on S we will mean an isometric immersion C : T¢ — S, where Tc = R/1(C),
and 1(C) is the length of C. To simplify the notation, by C' : R — S we also
denote the corresponding lift. (Such a lift is uniquely determined once we fix a
covering map 7 : R — T¢.) We call T¢ the parametrizing torus for C' (because
Te =R/1(C) is a 1-torus). By a point on C' we mean C(p) where p € T¢, or
p € R. Given two points a,b € R, we let C[a, b] be the restriction of C : R — S
to the interval [a, b]. If b < a, then the orientation of the segment C|a, b] is the
negative of the orientation for C'. Of course Cla+nl(C),b+nl(C)] is the same
creature for n € Z. By C’(p) we denote the unit tangent vector to C' with the
appropriate orientation.

Recall that T'H? denotes the unit tangent bundle, where elements of
T'(H?) are pairs (p,u), where p € H? and u € TleQ. The tangent space TI}
has a complex structure, and given u € T'S, by /—1u € Tpls we denote the
vector obtained from u by rotating for 7.

Recall that for u,v € T I}Hz, we let ®(u,v) denote the unoriented angle
between v and v. If u € Tlez, thenu@q € T, ql]HI2 denotes the vector u parallel
transported to ¢ along the geodesic segment connecting p and q. We use similar
notation for points in TS, except that in this case one always has to specify
the segment between p and ¢ along which we parallel transport vectors from
T,S to T,S.

We refer to the following lemma as the Convergence Lemma. The proof
is left to the reader.

LEMMA 5.1. Suppose A and B are oriented geodesics in H? that are
E-nearly homotopic, and let
1(4) 1(4) 2 1(B) 1(B) 2
D=, = H -, — H
a { 5 g | T H b R
denote the unit time parametrization. Set | = £ min(1(A),1(B)). Then there
exists 0 < tg < E such that for t € [—1,1], the following inequalities hold:
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(i) d(a(t),b(t +tg)) < elt+E+1-L
(i) ©(a/(1)@b(t + to), V' (t +tg)) < eltlFEFI=L

Let (p,u) and (q,v) be two vectors from T'(H?). We define the distance
function

dis((p, u), (¢,v)) = max(®(u @ ¢,v),d(p, q)).
(We do not insist that dis is a metric on T1H?.)
Let a : [a,b] — H? be a unit speed geodesic segment. We let i(a) = o/(a)
and t(a) = o/(b). We have the following lemma. (We omit the proof)

LEMMA 5.2. Lete, L > 0. There exists a constant €' (L) with the following
properties. Suppose that o : [ag,a1] — H? and 8 : [bo,b1] — H? are e-nearly
homotopic, that is, d(a(a;), 8(b;)) < e. Suppose that ay — ag > L, and e < 1.
Then

dis(a’(a;), B'(b:)) < e(1+€'(L)),

with ' (L) — 0 as L — oc.

5.2. The Preliminary Geometric Square Lemma (the PGSL). Suppose
Cij, 1,5 = 0,1, are four closed geodesics on S, and imagine that Cj; is covered
by two overlapping arcs C;; and Cj;, where 0;6 and Cﬂ are nearly homotopic
and likewise for Cy; and C7;. The Geometric Square Lemma (GSL) states that

> (~1)7Cy =0.
The full statement of the GSL is given in Section 5.3.

The following is the Preliminary Geometric Square Lemma. We have
added hypothesis (v) to the GSL (Lemma 5.4) so as to find points in the
two convergence intervals of the four curves, which are nearly diametrically
opposite.

LEMMA 5.3 (Preliminary Geometric Square Lemma). Let E, e > 0. There
exist constants K = K (e, E) > 0 and Ry(S, e, E) > 0 with the following proper-
ties. Suppose that we are given four oriented geodesics Cij € I'c g, 4,5 = 0,1,

< af <y <y <

and for each ij we are given four real numbers T,
z;; +1(Cyj). Assume that

(i) The inequalities x:; — ;> K and y;; —y;; > K, hold.

(ii) the segments Cijlz;;, x;;] and Cy j [:c;,j,,a:j,j,] are E-nearly homotopic, and
likewise the segments C; [yz;,ym and Cyjr [yiTj,, y;,rj,] are E-nearly homo-
topic, for any i, j,i', 5" € {0,1};

(iii) the segments Cojzg;, yarj] and Cjlzy;, yfr]] are E-nearly homotopic;

(iv) the segments Ciolyig, Tip + 1(Cio)] and Ciily;;, xj; +1(Ci1)] are E-nearly
homotopic;

(V) Ydo — Too = R+ K and xfy +1(Coo) — ygo > R+ K.
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Then for R > Ry, we have

(6) > ()™ C;=0
4,j=0,1

in Ilyoe, r homology.

Remark. Hypothesis (v) is satisfied provided that ygy — yog > R-

Proof. Set K = 14+ FE—loge. For simplicity we write 1(C;;) = 1;;. We claim
that we can find 2o € [zgy+ 5, 2o — 5 +1] and yoo € [yoo + 5, ydo — 5] such
that yoo — oo = R. If yoy < x99 + R, we let zgp = z( + % and Yoo = xoo + R.
If yoo > zg9 + R, we let yoo = ygo + % and xgo = Yoo — R.

By the Convergence Lemma (Lemma 5.1), and by the choice of the con-
stant K, we can find z;; < xij < :IZ':; and y,;; < yij < yzg so that

dis(cz(j (xij)v 060($00>)7 diS(Cz(j (yij>7 C(/)O(yoo)) <€
and the pairs of geodesic segments Co; [xo;, yo;| and C1;[z14, y14], and Ciolyio, Tio
+ Lio] and Cj1yi1, xi1 + 1i1] are e-nearly homotopic.

Let Iij = yl-j —."L‘Z'j and Jij = ."L‘Z'j —I—lij —yij, SO Iij + Jij = lij- Then IOO =R
and Jypg = lgg — R, so |J00 — R‘ < 2e.

Also, by the triangle inequality, we have |Ipy — R| = |Iop1 — Ipo| < 2e. So

|Jo1 — R| < [Ip1 — R| + |lo1 — 2R| < 4e.
Then
|J1j — R| < |Joj — R| +[J1; — Joj| < Ge,
S0
‘[1]‘ — R| < ‘J1j — R‘ + ’11]‘ — 2R| < 8e.
Therefore, we get |I;; — R|,|Ji; — R| < 8¢ for i,j € {0,1}.
We take

ago € Conng, gioga(V—1C" (w00), —v/—1C" (y00)),

and we let «;; be the geodesic arc connecting x;; and y;; that is e-nearly
homotopic to agy (see Figure 4). Then dis(i(cj), (o)), dis(t(cvj), t(aoo))
< 2¢. Therefore, because dis(Cj;(zi5), Coo(woo)) < € and dis(Cy;(yi5), Coo(Yoo))
< g, we have

Qyj S COHH3€7R+1Og4(\/ —lC’(mij), —\ —10/(%]')).

Define II;; as the pants generated from C;; by adding the third connection ;.
Denote by A;; and B;; the other two cuffs of 1I;;, oriented such that

Oll;; = Cij — Aij — Bij,

where A;; is freely homotopic to the closed broken geodesic Cj; [xij,yij]ozi_jl,
and B;j to Cij [yij,:cij + lij]ozij.
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Figure 4. The Preliminary Geometric Square Lemma

Applying Lemma 4.8, we obtain
‘I(AZ]) — QR‘ < ‘IZJ — R’ + 10e < 20e
and, simﬂarly, ’l(sz) — 2R’ < 20g, so Hij S FlOa,R- Finally, Ajg = Aila and
BOj = Blj, SO
0= > (=)™l = Y (-1)™Cyt
i,j=0,1 i,j=0,1
in IIo;, g homology, which proves the lemma. [l

5.3. The Geometric Square Lemma.

LEMMA 5.4 (Geometric Square Lemma). Let E,e > 0. There exist con-
stants K1 = K1(S,e,E) > 0 and Ry(S,e, E) > 0 with the following properties.
Suppose that we are given four oriented geodesics Cy; € I'c g, 4,5 = 0,1, and for
each 1j we are given 4 points x;; < a::; <y;; < y;; < z;; +XCij). Assume that
;;
(ii) The segments Cyjlx;;, x

(i) The inequalities x; — z;; > K, and yg —y;; > Ki, hold.

+

ij
and likewise the segments Cj; [y;,ym and Cy [y;j,,y;,rj,], are E-nearly
homotopic, for any i,7,4,7 € {0,1}.

(iii) The segments Co;lzy;, ysr]] and Cyjlzy;, yfj] are E-nearly homotopic.

(iv) The geodesic segments Ciolysy, xh + 1(Cij)] and Cily;, zf; +1(Cy;)] are
E-nearly homotopic.

Then for R > Ry, we have
(7) Y ()G =0,

i,j=0,1

| and C’i/j/[asf,j,,x;?j,}, are E-nearly homotopic,

in I1poe, g homology.
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Proof. Below we use Ly = Lo(S,¢, F) and Ky = (S,¢, E) to denote two
sufficiently large constants whose values will be determined in the course of
the argument. The constant )y can depend on Ky and Ly. The constants Ky
and Ry (from the statement of the GSL) can depend on Ky and Ly and Q.
Each of these constants will be implicitly defined as a maximum of expressions
in terms of constants that precede the given constant in the partial order of
dependence that we just have described.

If we cannot apply the PGSL, then possibly interchanging the roles of the
x’s and the y’s, we find that

gy < Yoo — loo + R+ K (e, E)
<Y —R+K(e,E)+1,
where K = K(e, F) is the constant from the previous lemma. We then let
Yoo = Yoo + Qo and let wog = yoo — R. (We assume that ()9 > K.) Then
(8) woo >z + 10,
provided (o > K + 11, and

Yoo + Qo < yoo < ygo + Qo — K1,
which implies
9) Yoo + 2(E —loge) + 10 < yoo < yay — 2(E +loge) — 10,
provided Qp > 2(E —loge) + 10 and K1 > Qo + 2(E — loge) + 10.

Therefore, by the Convergence Lemma we can find y;; in the interval

[Yiss y:;] such that dis(Cy;(yi;), Coo(yoo)) < €. We then let
wi; = yi; — R
> a4+ 10
(provided Qo > E + K + 12)
> x;; + Ky
>z + 2(FE —loge) + 10
(provided K7 > 2(F —loge) + 10).

It follows from Lemma 5.1 that Ciolwio,yio] and Cj|wir,yi1] are € C*
nearly homotopic. (Two segments are C'' nearly homotopic if the two initial
and the two terminal vectors are € close in the tangent bundle respectively.)
The point is that these two segments are contained into much larger segments
that are F-nearly homotopic.

Let (g,v) € T'S, and take B;p € Conn. r,(v, —/—1C!y(wio)) (where we
assume that Ly > Lo(e,S) and Lo(e,S) is the constant from the Connection

Lemma (Lemma 3.1)). We take ago € Conng gyioga—r, (v —1C(yoo0),v) (see
Figure 5). Then we find a;; € Connse riloga—r1o(vV—1Cj;(yij),v) and By; €
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Yij

Figure 5. The Geometric Square Lemma

Connge 1, (v, —\/—IC’{]- (wsj) such that agg and a;; are e-nearly homotopic and
Bio and B;1 are 2e-nearly homotopic for every 7,7 = 0, 1.
Let II;; be the pair of pants generated by the geodesic segment Cj;[w;j, yij],

the broken geodesic segment Bilai_jl and, last but not least, the geodesic
1

segment (Ci;[yij, wij +1i5])
pair of pants.

Let A;;j be the closed geodesic freely homotopic to «;3;;Cijlwij, yi;] and
let B;; be the one for Cjjlyij, wi; + Lij] i;lai_jl. Then 01l;; = Cyj — Aij — Biyj.

Using the second inequality from the remark just after the Sum of In-
efficiencies Lemma (see Lemma 4.8), we find that |1(4;;) — 2R| < 13¢ and
|1(B”) — 2R| < 15¢. Hence Hij S HlOz—:,R-

Observe that A;p = A;1, so

Yo (FU)TC - Y (-)Tol; = Y (1) By

i,j=0,1 i,j=0,1 i,j=0,1

The reader can verify that it is a topological

Let the Qi Qi bi_j, and bi_j be real numbers and B;; : R — B;; be a parametriza-
tion of the geodesic B;; so that Bj;(a;;), Bij(a;-;), Bi;j(b;;), and Bz-j(b;-;) are the
projections of points g, C’l-j(y;;), Cl-j(x;j), and Cw(a:j]) respectively onto the
geodesic B;;. The points g, Cj; (y;g), Cij(x;;), and Cj; (a:;;) belong to the bro-
ken geodesic Cjj[yij, wij + 1] Z-;lai—jl, and we project them to B;; by choosing
lifts of B;; and Cijlyij, wij + ij] iglozi_jl in H? that have the same endpoints
and then use the standard projection onto the lift of B;;.
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It follows from the Convergence Estimate that each of g, Cij(yi'; ), Cij(z;;)

and Cw(:z:;;) are within distance 1 of the corresponding projections on B;;.
Then

bfj—b;j 2$i+j—:nfj—2
> Ko
(provided K1 > Koy + 2)

and

af;—a; > R—Lo—3+ K —Qy—E—1
> R+ Ky

(provided K7 > Ko+ Qo + Lo + E + 4).

Assuming that Ky > K(10e, E + 2) (where K is the constant from the
PGSL), we find that the differences b;; — b;; and a;»; — a;; satisfy the lower
bound from the PGSL. (Observe that bfj and b;; are E+ 2 close and similarly
for the a’s.) Also, the B;;’s are in I'jg. g. So we apply the PGSL to show that

> (=)™B;=0
i,j=0,1
in Il;g0e, g homology.

Here we explain why the assumptions of the PGSL are satisfied. For
each i, piecewise geodesics ai0~ Cip[yio, x;a] and «il™Cj [y, w;ﬁ] are E-nearly
homotopic; it follows from Lemma 4.1 that Bjo[ay,ajj] and Bii[a;;,afj] are
(E + 4)-nearly homotopic.

Likewise,

Cojwoj, wojl By, ;' Cojlyos yg;)
and

Chjlzig, wij)Br; o) Cujlyrs, v
are E-nearly homotopic (because the individual segments are), and hence
Boy; [baj,aa'j] and Blj[bl_j,afj] are. O

Randomization (Randomization remarks for the GSL). Let ¢, E > 0. Ev-
ery constant K below may depend only on ¢, S and F.
4
Below we will define a partial map g : (F 1,R) — RIIjp0e, g such that
(i) g is defined on any input (Cjj, xf;-, yf;) that satisfies hypotheses (i)—(iv) of
GSL;
(i) Y (=1)""Cy; = 69(Cij’wijvyij); ,
(iii) g is K-semirandom with respect to measures classes 2?14 on (F .17 R) and
o1 on Hl,R~
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4
We first define a partial function gy : (FL R) — RIIjo., g that is defined

on inputs (Cij,xiij,yi) that satisfy the extra hypothesis (v) from the PGSL.
Given such an input, we follow the construction of the PGSL to construct z;;
and y;;, and we observe that because these new points are bounded distance
from the old ones, the map (Cij,w;tj, yf?) — (Cyj, xij, yij) is K-semirandom as

4 . 4
a partial map from (FLR) to (FLR) , with respect to the measure classes

Z%l on (if.LR)Zl and Z?‘l on <f17R>4.

Then we take a random third connection

ago € Conng gyiog4(V—1Ch0(x00), —vV'—1Ch(y0o))-

Likewise for «;;. Adding the third connection «;; to C;; we obtain the pants
I1;;(ej). We claim that distinct o; lead to distinct pants II;;(cv;). The third
connection «; is e-close to the unique simple geodesic arc on II;;(ay;) that is
orthogonal to v;; at both ends. On the other hand, no two distinct «;; are
e-close, so assuming that the injectivity radius of the surface S is at least 2¢,
we find that distinct ay; give distinet IT;;(ag;).

So, for each input (Cjj, x5, yi5), by adding a random third connection ;;
we construct the pants II;;(a;;). So far, we have been using the term “random”
to mean arbitrary. In these randomization remarks we will also interpret the
phrase “a random element of a finite set S” as “the random element of RS,”
namely I%'I S ses X

We can then think of every map f : S — T that we have implicitly
constructed in the text as the associated linear map f : RS — RT defined by
fOC aizi) = a;f(x;). So, for example, we let

Qi € Conn5a3+log4(ﬁcéj($ij)a _\/jlcz(j(yij))
be the random element of
Conne,R+log4(\/jlcz{j(xij)v *\ﬁq{j(yz’j)),
and then II;;(q;) is the image of a;; by the linear form of the map a;; —
i (cvig)-

In this manner we have constructed a partial map from fl,R — IR
(defined by (Cij, w45, yij) — Ilij(ay;); compare with Lemma 3.2 ), and we claim
that it is K-semirandom with respect to Ei“' and oqy. To verify this claim we
need to show that for any given pants II € II; g, the weight of II is at most
Ke 3E. Let C be a cuff of II, and choose points z,y € C that lie in certain
unit length intervals on C. Let Conn be the set of all good third connections
between z and y. (By this we mean all connections « so that C' and « produce

a pair of pants in IT; r.) The set Conn has approximately efi=K elements.
Moreover, there is a unique third connection a € Conn so that o and C' yield
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the given pair of pants II. So, the total weight of II is at most e % times the

total weight for the three choices of C' € 9II (with associated unit intervals),

and we conclude that the total weight for II is at most 3e~Fe=28 = Ke3E,
. 1) HITT . - i

Also, the map (H”)z‘,je{o,l} — > (—1)""71I;; is of course 4-semirandom

from (H‘iR,E%‘l) to (RIIy g, X1r). Composing the above maps we construct
the map go and see that gg is K-semirandom.

For the general case, similarly as above we first define the map

h: (Cij, xli],yf;) — RHLR
according to our second construction, on every input (Cj;, a:l:-tj, yz:';) that satisfies
conditions (i)—(iv) of the GSL, but not condition (v) of the PGSL.

We construct y;; and w;; as before. The map (Cjj, xl-ij, yfj[) — (Cij, vij, wij)
is K-semirandom. Then we find the connections «;; and 3;;. There are at least
efi=K of the a;j (we only fix a single §;;), and each third connection «;;3;; leads
to a new pair of pants II;;(c;;3;;). Let N denote the number of connections
a;j. (By construction, the number N does not depend on ¢ and j.) This defines
the map

WCij x5, y55) =D %Hij(aijﬁij),
and we can verify that h is K-semirandom.

Then we observe that Op : II;; — B;; formed by taking the appropriate
boundary curve of the II;; we constructed is K-semirandom, so the induced
map h : (Cij,xz??,yfg) — (Bij,aij,bij) is as well. So the map g; defined by
gl(Cij,xiij,y?;) = Y (=1)™1L; + go(Bij, af;, bf;) is K-semirandom, and hence
g = go + g1 is as well.

6. The Algebraic Square Lemma

We prove the Algebraic Square Lemma, which will be used in almost all
of our subsequent identities in the Good Pants Homology. In particular, it will
allow us to encode an element of (S, *) as a sum of good pants and then
prove that the encoding of products of elements of 71 (S, %) is the sum of their
encodings.

6.1. Notation. Let * € S denote a point that we fix once and for all.
By m1(S,*) we denote the fundamental group of a pointed surface. If A €
m1(S, %), we let -A- be the geodesic segment from * to * homotopic to A. By
[A] we denote the closed geodesic on S that is freely homotopic to -A-. If

A, A, € (S, %) we let ~Ay - Ag - ... Ay be the piecewise geodesic arc
that is the concatenation of the arcs -A4;-. We let [ Ay - Ag - ...+ A,-] be the
closed piecewise geodesic that arises from the arc -Ay - As-...- A,- by noticing

that the starting and the ending point of -Ay - Ay - ... A,- are the same. By
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1([A]) is the length of the closed geodesic [A]. By 1(- A -) we mean of course the
length of the geodesic arc -A-, and in general by 1(- Ay -...- A,-) the length of
the corresponding piecewise geodesic arc.

Remark. Observe that for any X; € m1(S,%),7=0,...,n — 1, the closed
geodesics [X; X1 ... X, 4j-1] are one and the same. (We are taking the indices
modulo n.) We will call this rotation and often use it without warning.

We remind the reader that -AB- is a geodesic arc from * to * representing
AB, while -A - B- is a concatenation of two geodesic arcs. Similarly, -AB - C-
is a concatenation of two geodesic arcs, while -A - B - C- is a concatenation of
three, and so on.

In particular, we have the following statements about the inefficiency func-
tion:

I(Ay-...- Ay = Zl(Al) —1(-A1A5. . Ay )
and

(A - A ) =D 10 A) = 1([Ar - Ag)).
Notice that we may have (and will usually have)

I Ay Ag ) > I(Ap - Ago).

6.2. The Algebraic Square Lemma (the ASL). The following is the Alge-
braic Square Lemma.

LEMMA 6.1 (Algebraic Square Lemma). Let e, A > 0. There exist con-
stants K(S,e,A) = K and Ry = Ry(S,e,A) so that for R > Ry, the following
holds. Let A;, B;,U,V € m(S,%), i =0, 1, be such that

() [([AUB;V]) = 2R| < 2, 4,5 = 0, 1;
(ii) I([AZ : U'Bj V]) < A;
(ii)) 1(-U ), 1(-V ) > K.
Then
S (—)HAUBV] =0
ij
in Ili00e, R homology.

Proof. For each i,j € {0,1}, we project the closed piecewise geodesic
[[A;-U - Bj- V] onto the closed geodesic v;; = [A;UB;V]. By Lemma 4.6
we find that each appearance of x is moved at most distance F = % +1
by the projections. Let 'ylj(azi) and 'yzj(yi) be the projections of * on 7;;
before and after U, and before and after V', respectively. Then providing that
our K is at least 2F plus the corresponding constant from the GSL, we have
T < :Uf] <y < yg <z +1(7;5) and the hypotheses of the Geometric Square
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Lemma. We conclude that
> (D)™[AUBV] =0
tj
in ITypoc,r homology. U
Randomization (Randomization remarks for the ASL). Let ¢, > 0. By

K we denote any constant that may depend only on €, S, and A.
Below we will define a partial map

f:G*xGxG*xG —RI g
such that

(i) f is defined on any input (A;, U, B;, V') that satisfies the assumptions of
the ASL;
(ii) (-1 [A,UB;V] = 0f(4;,U, B}, V);
(iii) f is K-semirandom with respect to the classes of measures Y52 x Y x
2%2 x Yqon G? x G x G? x G and oy on IT; g.

Let h be a partial map
N
h:GExGxG2xG— (FLR)

defined by letting h(A;,U, B;,V) = (C’ij,:riij, yfj[), where Cy; = [A;UB;V], and
x;'; and y;'; are the points on the parametrizing torus for C;; such that the points
C; (xfj) and Cj; (yi) are the corresponding projections of the four copies of the
base point * (which belong to the closed piecewise geodesic [- A;-U-B;-V +]) to
the closed geodesic Cj;. (These projections were defined above.) It follows from

4
Lemmas 10.2 and 10.3 that h is K-semirandom. Let g : (F 17R> — RII g

be the K-semirandom map from the previous section. (See the randomization
remarks for the GSL.) Then f = g o h is K-semirandom.

6.3. The Sum of Inefficiencies Lemma in the algebraic notation. The fol-
lowing lemma follows from Lemma 4.8.

LEMMA 6.2 (Sum of Inefficiencies Lemma in the algebraic notation).
Let e,A > 0 and n € N. There exists L = L(e,A,n) > 0 such that if
Ul,...,UnJrl =U;,Xy,...,. X, € 7T1(S,*), and I(UZ - X, - Ui+1) < A, and
1(-0tU; -) > L, then
I([Uy-X1-Up-Xo-ooo Up- X)) =Y _I(-Us - Xi - Uy
i=1

<e.

Remark. In particular, we can leave out the X’s in the above lemma and

write
n

’1([. U Uy Uy ) =D I(-Ui-Uggs+)
i=1

< €,
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providing that I(-U; - Uj11-) < A and 1(-U;-) > L. Moreover, by the Long
Segment Lemma for Angles (for L large enough), we have

(U - Us- ... Uy]) — i[(@i) < 9,
=1

where (91 = @(t( Ul ), l( Ui+1 ))
Similarly, the following lemma follows from Lemma 4.9.

LEMMA 6.3. Let e, A > 0 and n € N. There exists L = L(¢,A,n) > 0
such that ifUl,. . .,Un+1 =U; € m(S,*) andXH,.. . 7X1j17"' ,an,...,ann S
7T1(S,*), and I(- UZ' . XZ' . U¢+1) S A, and 1(- UZ’ ) Z L, then

I(UG- X1 oo Xugy e Un - Xt oo X )

n

_ZI('Ui'Xil"w‘Xiji‘Ui+1') <e.
=1

Finally, we have the Flipping Lemma.

6.4. The Flipping Lemma. For X € m1(S, *), we let X = X! denote the
inverse of X.

LEMMA 6.4 (Flipping Lemma). Let ¢, A > 0. There exists a constant
L = L(e,A) > 0 with the following properties. Suppose A, B,T € (S, %),
and

I(T-A-T),I(-T-B-T-) <A,
and 1(-T-) > L. Then
[[([T-A-T-B)-I([T-A-T-B)|<e,

and therefore
W([TATB]) — ([TATB))| < e.

Proof. By the Long Segment Lemmas,

|1(-T-A-T-B-T-)—I(.T.A-T-)—I(-T-B-T-)|<Z
and
I(T-A-T-B)—I(T-AT-B-T)| <=
Likewise,
I(T-A-T-B-T)—I(T-A-T)—I(T B T)\<Z
and
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But I(-T-A-T-)=1(-T-A-T-), because -T - A-T- is the same as - T-A-T -
with reversed orientation. So

[I(T-A-T-B)—I([T-A-T-B)|<e.
Similarly, we conclude |1([TATB]) — 1([TATB])| < e. O

7. Applications of the Algebraic Square Lemma

In this section we will describe the encoding of an element A of 71 (S, *) as
a sum Ap of good pants. (The encoding depends on a choice of a sufficiently
large element T of 71 (S, *).)

In brief, we let

Ap = % (ITATB] — [TATB))

for suitable B, and we then observe that the Algebraic Square Lemma implies
that different choices of B give the same element of the good pants homology.
We can then easily prove that

[TATB} = Ar + By,

which we call the Two-Part Itemization Lemma. We want to go one step
further and prove that

[TATBTCTD)] = Ar + By + Cr + Dy

for suitable A, B,C, D and T.
It turns out that in order to prove this Four-Part Itemization Lemma, we
must first prove that

[TATBTCTD] = [TATDTCTB].

This is indeed the most difficult lemma of this section.

We would then be able to go ahead and prove a Six-Part Itemization
Lemma and so forth, but the Four-Part Itemization Lemma is sufficient for
our purposes.

We state several results and definitions (notably the definition of A7 in
the next lemma) that depend on an element 7" € 7 (S, ) and A > 0. We treat
both T and A as parameters, and the exact value of both 7" and A (which are
then used in the proof of the main theorem) will be determined in Section 9.

7.1. The definition of Ap. For A,;T € m(S,*) and ¢, R > 0, we let
FConn. g(A,T) be the set of all B € m(S,*) such that [TATB],[TATB] €
Peg,and I(-T-B-T-) < 1.

LEMMA 7.1. Let e, A > 0. There exists a constant L = L(S,e,A) such
that if A,T € 7(S,*) and I(-T-A-T-) <A, and 1(-T-) > L, and 2R —
1(-A-)=21(-T-) > L, then
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(i) FConn, r(A,T) is nonempty, and log ‘]—"Conn&R(A, T)’ >2R—-1(-A.) —
A-T-) — A — L;

(ii) [TATB] — [TATB)] = [TATB'] — [TATB'] in ge,r homology for any
B,B' € FConn, r(A,T).

We then let

1 — _
Ap = 5([TATB] — [T ATB))
for a random B € FConn, r(A,T).

Remark. Part (ii) of Lemma 7.1 implies that for any B € FConn, (A4, T),
we have

1 _ _
Ap = 5([TATB] — [TATB])

in ITjpp, g homology. Also, it is important to note that [A] is equal to A in
the standard homology H;.

Proof. Suppose that - B- € Conn, g/(—i(-T-),i(-T-)), where R' = 2R —
1-A) =21(-T-)—I(-T-A-T-). The set Conn. g/(—i(-T-),i(-T-)) will be
nonempty (by the Connection lemma (Lemma 3.1)) provided L is large. Then,
by the Sum of Inefficiencies Lemma,

([TATB)) — 2R| < e + O(¢?)
and
IW([TATB]) — 2R| < ¢ + O(£?),
provided 1(- T"-) is large. Thus, with slight abuse of notation, we have
Conn, p/(—i(-T-),i(-T-)) C FConn, gr(A,T),

and
log \ConnE,R/(—i(-T-),i(-T-)\ >2R—-1(-A-)—=21(-T-)— L

if L is large, so we have proved statement (i) of the lemma.

Again, by the Sum of Inefficiencies Lemma, the inefficiency of the piecewise
geodesic [ T+ A-T- B-] is at most A+ 2. Then statement (ii) follows, provided
L (and hence (1(-T'-)) is large, from the Algebraic Square Lemma. O

Randomization (Randomization remarks for Ar). All constants K may
depend only on €, A, and S and T € 71 (S, *).

Letting B, € RG denote the random element of FConn, r(A,T), we
consider the map A — By from G to RG. If 1(- A-) € [a,a + 1], we find that
1(:- B-) € [Lq, Ry], where L, = 2R—a—21(-T-)—A—4 and R, = 2R—a—21(-T'+)
for all B € FConn, (A, T). Because

FConn, g(A,T)| > ela=l
| |
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(where L = L(g,S) from the Connection Lemma), and 0,(G) < K (see the
appendix for the definition of 0,), we find that for any X € G,

(A = By)woa(X) < Kelle
if 1(- X +) € [Lq, Ro), and (A — B 4)«04(X) = 0 otherwise. This implies

LR ]
(A— By)woqg < K Z ek+L_L“Jk,
k=|La)
which in turn implies that the map A — B4 is K-semirandom with respect to
Yq and Yq.
We define [ATB4T] by
1
|FConn, r(A,T)|

[ATB,T)] = > [AT BT).

BeFConn, r(A,T)

The map A — (A,T) is €T semirandom by the remark stated just
before the Principles of randomization section in the appendix.

Then the partial maps from G to RG* defined by A — (A,T,B4,T) and
A — (A, T,B4,T) are Ke?( T")_semirandom with respect to ¢ and X%, and
hence the map

A— Ar = % ([ATB,T) — [ATB4T))

is Ke2(T")_gemirandom with respect to X¢ and or.

The map (A,B’) — (A,By,B’) is K-semirandom with respect to Eé?
and Eé?’, and (A,B 4, B) = (A, A, T,B,, B, T) is Ke? T")_semirandom with
respect to 3% and 52 x Yo x U5 x Yg.

Also, by the Algebraic Square Lemma, the map (A, A, T, B,B",T) —» 1l €
RII; g, such that

Ol = [TATB] — [TATB] — [TATB'] + [TATB/],
is K-semirandom from G? x G x G? x G to IT; g, with respect to the measure

classes 2%2 X Xa X 2%2 x Yg and opp. Composing the above mappings we find
a Ke2tT)_semirandom map ¢ : G* — RII; g such that

1 _ L
dg(A,B") = Ap — 3 (TATB') — [TATB']).
Remark. At the end of the paper we will see that T' and A only depend
on S and €.

7.2. The Two-part Itemization Lemma. The following lemma is a corol-
lary of the previous one, and we refer to it as the Two-part Itemization Lemma.

LEMMA 7.2 (Two-part Itemization Lemma). Let ¢, A > 0. There exists
a constant L = L(S,e,A) > 0 such that for any A, B,T € 7(S,*) such that
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[TATB] € T g, we have [TATB] = Ar + By in Ilage, r homology, provided
that 1(-T-),1(- A-),1(- B-) > L and I([ T-A-T-B']) < A.

Proof. Tt follows from Lemma 6.4 that [TAT B] € T'oc . In order to apply
Lemma 7.1, we need an upper bound on I(-T - A-T-) and a lower bound on
2R—1(- A-) —21(-T"). These follow from 1(- B-),1(-T-) > L, I([ T-A-T-B]) <
A, and the Sum of Inefficiencies Lemma.

We observe

[TATB] = %([TATB] [BT ATY)
% (ITATB] - [TATB))
% ([TATB] - [TATB])
%([TBTA T AJ)
= Ar + By
in TIy00, g homology. O

Randomization (Randomization remarks for the Two-part Itemization
Lemma). We have implicitly defined a map g : G?> — RII;00e,r such that
d9(A,B) = Ar + By — [ATBT)]. The map g is Ke?(T)-semirandom with
respect to X X X and opg.

Remark. In fact it should be true that

=1

provided 1(- T-) is large given I(T'A;T) and I(TB;T). Above we proved this
when n = 1 (provided 1(- A-) and 1(- B -) are large), and we will prove it in the
rest of this section for n = 2, using the ADC B lemma, which we prove next.
The general case can be proved by induction using the cases n =1 and n = 2
(but we will only need this statement for n = 1,2).

Remark. We also observe that under the usual conditions we have Apy =
Ay in g, g homology. This follows from the fact that 2Ary = [TU AUT B]+
[TUAUTB] = [UAUTBT] + [UAUTBT] = 2Ay.

7.3. The ADCB Lemma.

CLAIM. Let ,A > 0. There exists L = L(A,d) > 0 with the following
properties. Let A;, B;, T € m1(S,%),i=0,1. If1(-T-)> L and I(-T - A; - T-),
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then
W([ATBoTA\TBT]) = Y 1(-TAT ) =Y W(-TB;T-)+41(-T-)| <.
j= =0

Proof. By the Sum of Inefficiencies Lemma we have that
I([-AO'BO'T-A1'T'B1'T-])

is close to

S I(T-A;-T)+1(-T-B;-T).
i=0,1

By the definition of inefficiency, the number
([AoTBoT A\ TBiT]) — 4U(T) — >~ (1(4;) +1(By))

= > ((-TAT)+1(-TBT ) — 4(T) — 1(A;) — 1(By))
1=0,1
is small in absolute value. The claim now follows from the Sum of Inefficiencies
Lemma. O

LEMMA 7.3 (ADCB Lemma). Let ¢, A>0. There exists L=L(S,e,A)>0
and Ry = Ro(S,e,A) > 0 with the following properties. Let A,B,C,D,T €
m1(S, %) such that 1(- B-),1(- D-),1(-T-) > L. If R > Ry and

I(T-A-TYI(T-C-T),I(-T-B-T),I(-T-D-T-) <A,
then [ATBTCTDT) = [ATDTCTBT) in IT200c,r homology provided that the

curves in question are in L' g.

Proof. Let (X,Y) = [ATXTCTYT)] for X,Y € m(S,*), and let {X,Y}
= (X,Y) — (Y, X) when both are in I'; . We claim that

(11) {X, Yo} ={X, "1}

in ITygoe, g whenever I(T'X T),I(TY;T) < A and the curves in question are in
L. g. To verify (11) welet A; =Y;, By = ATXTC, By = CTXTA,andU =T
and V =T, where A;, B;, U,V are from the statement of the Algebraic Square
Lemma. Since by rotation

(X,Yy) = [YoTATXTCT]
(Yo, X) = [YoTCTXTAT)
(X, V1) = Vi TATXTCT]
(Y1, X) = MTCTXTAT],
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equation (11) follows from the Algebraic Square Lemma. (The hypotheses in
the Algebraic Square Lemma follow from the hypothesis of this lemma and the
Sum of Inefficiencies Lemma.) Likewise,

(12) {Xo, Y} ={X1,Y}

under the appropriate hypotheses.

In order to prove the lemma we first suppose that |1(- TBT-) —1(- TDT -)|
< £. If L is large enough (and hence 1(- B-),I(-D-) and 1(-T"-) are large
enough), it follows from the Connection Lemma that we can find a random
geodesic arc

B € Conn, y(.rp7y o7y (—i(-T+),i(- T)).

For any such E, we have |1(-TBT-) — 1(-TET-)| < ¢ + O(£?). Therefore, by
the previous claim we have that the curves (B, E), (F, B), (D, E), and (E, D)
are in I's. g. Then from (11) and (12) it follows that

{B7D} = {B7E} = {D7E} = {DvB}7

and therefore {B, D} = 0, in IIy0., g homology.
More generally, if 1(- B-),1(- D-) > L, let k be the smallest integer such

that B B
I(-TDT-)—1(-TBT -
> aIUTDT) 1T

Set ' o
i _ —1
= _—1(-TDT-
i = gl ) ’
For 0 < i < 2k, we take random - E;- € Conng . (t(-1-),i(T")) (observe that

r; > L — A), and we let Ey = D and Eo, = B. Then
{Eo, Eor} = {Ev, Eo}
={E1, Box—1} ={E2 Eop_1}
= {Es, Eo,_o} = {E3, Eap_2}

1(-TBT ) —21(-T ).

={Ey-1,Ept1} ={Ek, Ext1}

and {Ej, Ex+1} = 0 in IIsp0. g homology by the first case, so we are finished.
O

Randomization (Randomization remarks for the ADC B Lemma). All con-
stants K may depend only on ¢, S and A. We have defined a map ¢ : G* —
RII; r such that

09(A, B,C,D) = [ATBTCTDT) — [ATDTCTBT).
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In particular, we defined h : G° — RII; g so that
Oh(A,C, XYy, V1) = {X, Yo} — {X,V1}.

This map h is M0 T) K-semirandom with respect to the measure classes ZG X
ZG X Z and Zr[

Then g9(A,B,C, D) is a sum of 2k terms of the form 0h(A4,C, X, Yy, Y1),
where each of X,Yj, Y7 is either B or D, or E;, which is a K-semirandom
element of G with respect to Y. Moreover, the Y; are always independent
from X. Therefore, for each choice we make of X, Yy, Y] (such as X = Ej;,
}/() = Egk_i, }/1 = E2k:—i+1 or X = B, and }/() = D, }/1 = E), the map
from (A, B,C,D) to (A,C,X,Yy, Y1) is K-semirandom with respect to Eé4
and X% x B x YE2. Therefore, noting that k < Li—RJ
K Re*(T")_semirandom, with respect to ECX;4.

, we find that ¢ is

Remark. This remark is about the previous randomization remark. Where
B and D are close in length, we can write {B,D} = {B,B} by (11), and
hence {B, D} = 0. But we are letting (X, Yo, Y1) be (B, D, B), and the map
(B,D) — (B, D, B) is not 1-semirandom for ¥3? and ¢ x X522 (because X

B:)

and Y] are not independent). This map is only e!( Z")-semirandom, which is

no good. It is for this reason that we introduce F.

The following lemma is a corollary of the ADCB Lemma. We call it the
Four-part Itemization Lemma.

LEMMA 7.4 (Four-part Itemization Lemma). Let e, A > 0. There exists
L= L(e,A) >0 such that for any A, B,C,D,T € m (S, *), we have
[ATBTCTDT) — [TDTCTBTA] = 2(A7 + Br + Cy + D7)
in Maooe, g homology provided that1(-T-) > L and I(- A-T-B-T-C-T-D-T ) <
A, and the curve [ATBTCTDT] is in I'c .
Proof. Recall the remark after the statement of Lemma 7.1. We have

[ATBTCTDT) — [ATBTCTDT] = 247,
[ATBTCTDT) - [ATBTCTDT) = 2Br,
[ATBTCTDT) — [ATBTCTDT] = 2C5,
[ATBTCTDT) — [ATBTCTDT) = 2Dy

in ITjp0., g homology. (All the curves in question lie in I'y. g by the Flipping
Lemma.) So

[ATBTCTDT] — [ATBTCTDT) = 2(A + Br + C + Dr)
in IT1pps, g homology. But
(AT BTCTDT] — [ATDTCTBT] = 0
in Ils00., g homology by the ADCB Lemma, so we are finished. O
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Randomization (Randomization remark for the Four-part Itemization
Lemma). We have defined g : G* — RII; g such that

99(A, B,C, D) = [ATBTCTDT) — (Ap + Br + Cs + Dr).

This map is K Re*'CT")_semirandom with respect to Zéfl and oy for some
K =K(g,8S).

8. The XY Theorem

In this section we prove the XY Theorem, which states that
(XY)T = X7+ Yr

for suitable X,Y and T.

The XY Theorem will be the central identity in the last section of the
paper; it will allow us to reduce the encoding of long elements of (.S, *) to
encoding of the generators. To prove the XY Theorem we will first prove two
related statements called the First and the Second Rotation Lemmas. These
are in turn proven with the Four-Part Itemization Lemma and the estimates
from the Theory of Inefficiency.

8.1. The Rotation Lemmas. Let X,Y,Z € m(S,*). Then we have the
three geodesic arcs - X -, - Y-, and - Z-. Consider the union of these three geo-
desic arcs as a f-graph on the surface S. This #-graph generates an immersed
pair of pants in S if and only if the triples of unit vectors i(- X -),i(-Y -),i(- Z )
and t(- X -),t(-Y ), t(- Z -) have the opposite cyclic orderings.

The following is the First Rotation Lemma.

LeEmMMA 8.1 (First Rotation Lemma). Let e, A > 0. There ezists K =
K(eg,A) > 0 with the following properties. Let R;,S;,T € m1(S,x*), i =0,1,2,
such that

() ( T-R;- Rz+1 T),I(TSZ . g¢+1 T) < A.
(i) 1(-7°) = K.
(ii) 1 R;-) +1(-S;-) +21(-T-) < R— K.
(iv) The trzples of vectors ( (+TR; )) and (t( TS; )), i =0,1,2, have opposite
cyclic ordering in TLS. (One of them is clockwise and the other one anti-
clockwise.)

Then
2
(13) Z(Ri—HRi)T + Z(Sigi—i-l)T =0

in Il300., R homology.
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T T

A

T T

Figure 6. The Rotation Lemma

Remark. Tt follows by relabeling that if max(1(- R;-)) + max(1(-S;-)) +
21(-T-) < R — K and the triples of vectors (t(-TRi )> and <t(-T5’Z~-)>, i =
0,1,2, have the same cyclic ordering in 7''S, then

2 2

(14) Y (RiRis1)r + Y (SiSit1)r =0
=0 =0

in IT300-,r homology.

Proof. Let r; > 0,4 =0,1,2, be the solutions of the equations
(15) i +1iv1 = 2R — 1( TRH_lRiT ) — 1( TSiSi+1T )

Then we let A; be a random element of Conn, ;. (—i(- 1), i(-T'-)).

Consider the three elements R;TA;T'S; of (S, *) and the correspond-
ing geodesic arcs - R;TA;TS;-. We will show that the corresponding #-graph
generates an immersed pair of pants IT4 in S. The three cuffs of II4 are the
closed curves [R; 1T A; 11TS; 115, T A;TR;]. We will also show that these closed
geodesics have length 3e close to 2R, which implies that 114 € II3. g.

We finish the argument as follows. Taking the boundary of 114, we obtain

2
Z [RZTAZTSI Si+1TAi+1TRi+1] - 0
=0
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in IT3. r homology. Applying the Four-part Itemization Lemma we find

2
0=> [Riy1RiTATS;S; 1T A1 T)

7

I
o

((Rix1Ri)r + (Ai)7 + (SiSiv1)r + (Ais1)7)

|
.M“

=0
2 ) 2
=Y (RiRiy1)r + > _(SiSit1)r
i=0 =0
in T30z, 7, because (A;)p = —(Ai) 7.

We now verify that [RZ‘TAZ'TSZ'SZ'+1TAZ'+1TRZ‘+1] S FQaVR. By the New
Angle Lemma (Lemma 4.2) applied to 8 = -T- and a = -T - R;-, for K large
enough (and therefore 1(-T -) large), the angle @(i(-T-),i(-TRiHRZ-T')) <
1, and likewise @(t(~T-),t(-TRi+1RiT~)) < 15, and for the same with R;
replaced with S;. It follows that G)(t('f_lzurl '),i('TRiHR,-T-)) < 2¢, and so
on. So by the Sum of Inefficiencies Lemma (using equation (5)),

)1([RiTAiTSiSiHTAiHTRiH]) —1(-Ai) =1 TRy RiT ) —1(- Aiy1 -
—1(: TSZ-S*Z-HT-)‘ < 0(?),
and moreover by (15), we have
(- 4;-) + 1 TRy 1 RiT ) +1(- Aiy1-) +1(- T'S;Si1T+) — 2R| < 2¢,

which proves the claim.

We now verify that the f-graph associated to the geodesic arcs - R;T A;T'S; -
generates an immersed pair of pants I14 in S. We find the unique 6y € [0, 7]
such that I(m — 6p) = A+ 1 (so m™— 6y = 2sec_1(e%)). Observe that
I(R;-T)<I(-T-Rix1-R;-T-)<A. Then1(- B;T-) >1(-T-)— A > K —A.
By the Sum of Inefficiencies Lemma for Angles,

I(m—O(i(- RiT-),i(- R T ")) =1 < I(- TRiy1 - RT)
<I(T-Riy1-Ri-T-) <A.

Therefore, @(z( RT"),i(- Rix1T ")) > bp.

On the other hand, by the New Angle Lemma, because the geodesic arc
- R;T - is long for large enough K (we showed above that 1(- R;T-) > K — A),
we have @(i(-RiT-),i(-RiTAiTSi )) < %‘), so the cyclic order of the triple
of vectors i(- R;TA;TS;-), i = 0,1,2, is the same as of the triple of vectors
i(- R;T -), and likewise the cyclic order of the triple of vectors t(- R;T A;TS; -),
i =0,1,2, is the same as of the triple of vectors t(- T'S; ). So the corresponding

cyclic orderings are opposed and we are finished. O
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Randomization (Randomization remark for the First Rotation Lemma).
We let K = K (g, S). We have defined g : G® — RII; g such that
2

dg(Ro, R1, Ry, 50,51, 52) = > (Ris1Ri)r + (SiSis1)7-
i=0
Let II denote the pants whose #-graph is made out of the three connections
. RZTAZT51§Z+1TAZ+1TR1+1 ‘ 1= 0, 1, 2. We can write
2
9((Ri), (5i)) =T+ > g1 (Rit1 R, Ay, SiSiya, Aira),
i—0

where g; is the map from the Four-part-Itemization Lemma (see the random-
ization remark). So g is K(e''07T") 4+ Re*(T"))_semirandom with respect to
2% and .

The Second Rotation Lemma is

LEMMA 8.2 (Second Rotation Lemma). Let e, A > 0. There exists K =
K(e,A) > 0 with the following properties. Let R;,T € 7 (S,x*), i = 0,1,2,
such that

(i) I(-T-Ri- Riy1-T) < A,
i) 1I(-T) > K.
Then
2 —
(16) > (RiRiy1)7 =0
i=0
in I300:, R homology.

Proof. Given T, we choose v € TS and let p = e, We take L suffi-
ciently large so that Conn, 1(¢(-T'-), p'v) is nonempty for i = 0,1,2. Then we
choose - S;- € Conne 1,(t(-T-), p'v). Then I(-T-S;-S;y1-T-) < log%—l—O(s) <1,
by the Sum of Inefficiencies for Angles Lemma, so when 1(- T"+) is large we can
apply the previous Lemma (see the remark after Lemma 8.1) with R; := S; to

obtain
2

2 Z(S/L'SiJrl)T =0
i=0
in II300:, g homology.
Then given R; as in the hypothesis to this lemma, we obtain
2
> (8iSit1)r + (RiRiy1)r =0,
i=0

and so
2

> (RiRiy1)r = 0. O
1=0
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Randomization (Randomization remark for the Second Rotation Lemma).
All constants K may only depend on € and S. We have defined g : G* — RII;

such that )

ag(R07 R17 RQ) = Z(RZRZ-i-l)T
i=0
We are fixing Sp, S1, Sz of length L, so the triple (Sp, S1,S2) is e3L-semi-
random, and the maps

(Ro, R1, R2) — (Ro, R1, R2, S, 51, 52)
and
(Ro, Ry, Rg) — (S(), S1, 52,50, 51, SQ)
are e and €% semirandom respectively.
Then letting g1r be the g for the First Rotation Lemma, we can letter

9(Ro, R1, Ry) = g1ir((Ry), (Si)) — %QIR((Si)a (Si))

6L+121(-T-)

and g1 is KRe'T") semirandom, so g is K Re semirandom.

8.2. The XY Theorem. The following theorem follows from the Second
Rotation Lemma. We call it the XY Theorem.

THEOREM 8.1 (XY Theorem). Let e, A>0. There exists K=K (e,A)>0
with the following properties. Let X, Y, T € m(S,*), i =0,1,2, such that
() I(T-X-Y-TH)I(T-X-T-),I(-T-Y -T-)<A;
(i) 1(-T+) > K.
Then (XY )r = X7 + Yr in I300.,r homology.

Proof. Set Ry =id, Ry = X, and Ry = Y, and apply the previous lemma.
O

Randomization. We have defined the map gxy : (X,Y) — RII; g such
that dgxy(X,Y) = (XY)r — Xp — Yp. (The map gxy is defined on the
appropriate subset of 22(; described in the statement of Theorem 8.1.) This map
is RK e T")_semirandom with respect to Eé2 and oyy, where K = K(g, A).

9. The endgame

In this last section of the main text of the paper, we prove that every
good curve is good pants homologous to a sum of encodings of a given set of
standard generators for (.S, *).

We prove this in three steps:

1. We prove in Lemma 9.2 that every good curve is good pants homologous
to a sum of two encodings of two elements of 71 (S, *); these elements are

represented by geodesic segments of length about R.
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2. We use the XY Theorem and Lemma 9.3 to repeatedly write X7 = (X1)r+
(X2)r where X; and X5 have length about half that of X. This allows
us to reduce an encoding of an arbitrary element of 71(S, %) to a sum of
encodings of elements of bounded length (bounded in terms of S and ¢)

3. We use the XY Theorem to reduce the encoding of an element of 7y (.S, )
of bounded length to a sum of encodings of generators. This requires the
proper choice of T', which is discussed in Lemma 9.1.

9.1. The good pants homology of short words. The following is the Good
Direction Lemma.

LEMMA 9.1 (Good Direction Lemma). For any finite set W C w1 (S, %),
we can find A = A(S,W) such that for any L, we can find T' € m (S, *) such
that 1(-T-) > L and I(-T-X -T-) < A, when X € W.

Proof. For any v € TS and ¢t > 0, we let ay(v) be the geodesic segment of
length ¢ such that i(ay(v)) = v, and we let ao(v) be the corresponding infinite
geodesic ray. We claim that for any X € 71(S,*) and X # id, there are at
most two v € T'S such that
(17) lim I(a; ' (v) - X - ay(v)) = oo.

t—00

To prove the claim we lift - X - to the universal cover H?, and thus get two
lifts of *, and hence two lifts of v. We observe that (17) holds if and only if
the two lifts of aso(v) end at the same point of 9H?. The map that maps one
lift of aveo(v) to the other is the deck transformation that maps one lift of * to
the other. The relation (17) holds if and only if a(v) is a fixed point of the
Mobius transformation M, and since M is not the identity this can be true for
at most two vectors v. (]

In the rest of this section we fix a set of standard generators g1, ..., gon
of m1(S, ). (Here n is the genus of S.) Recall that H; denotes the standard
homology on S. Let [g;] denote the corresponding closed curves. For any closed
curve v C S, there are unique ay, ..., a2, such that v = > a;[¢g;] in H;. We
define ¢ : T' — Rmy (S, *) by q(y) = 3_ a;9:, where I is the set of all closed curves
on S. We extend the definition of ¢ to a map ¢ : m1(S,*) = R{g1,..., 92} by
4(X) = q([X]).

For [ € N, we define the set W, as the set of elements X € (S, %) that
can be written as a product of at most [ generators (or their inverses).

THEOREM 9.1. Let ¢ > 0. For alll € N and L > 0, we can find T €
m1(S, *) and Ry such that 1(-T-) > L, and for R > Ry and X € W, we have

Xr = (¢(X))r

in Il300., r homology.
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Remark. Here we extended the partial map (- )7 : m1(S, *) — RI'. g (given
by X +— X7) to a partial map (- )7 : Rmi (S, %) — RI. g. We remind the reader
that X7 depends implicitly on R and €.

Proof. We take A = A(W;) and T' = T'(W;, L) from the previous lemma,
sol(-T-)>Land I(-T-X-T) < Aforall X € W;. If X € W7, then ¢(X) = X
or ¢(X)=—-X, so Xy = (¢(X))r.

Take 1 < k < [, and assume X7 = ((¢(X))r in II300., g homology for
all X € Wj. Then for any X € Wy, we can write X = ¢7Y, for some
ie{l,...,2n},and 0 = £1, and Y € Wy. Then Xr = (¢7)r + Y7 by the XY
Theorem (see Theorem 8.1), which requires

I(T-X-T),I(-T-g7 - T),I(-T-Y-T:) <A,

and Y7 = (¢(Y))r by assumption, so X7 = ((¢(X))r. We conclude the theo-
rem by induction. O

Randomization (Randomization remarks for Theorem 9.1). Given [, L, T
and R (and €), we have implicitly defined the map gw : W; — II300. g such
that dgw (X) = X1 — (¢(X))r. The map gw arises from a sum of at most
| applications of the XY Theorem, so gy is K(S)RKe'?(T ) _semirandom,
because every measure in X has total mass at most K (S).

9.2. Preliminary lemmas. We now observe that every good curve is good
pants homologous to (Xo)7r + (X1)r for suitable Xy and X; from 7 (S, *).

LEMMA 9.2. There exists a universal constant € > 0 such that for every
0 < e < &, there exist constants L = L(e,S) > 0 and Ry = Ry(e,S) > 0 with
the following properties. For any v € I'e g and T € m(S,*), 1(-T-) > L, we
can find Xo, X1 € m1(S, %) such that

(i) 1(-X;+) — (R+ 2L —log4)| < 3;
(it) O(t(-T-),i(- Xi-)), OF(- X;-),i(-T-)) < F;
(iii) v = (Xo)r + (X1)7 in 300,z homology

for R > Ry.

Proof. We take at random two points xg and z; on the parametrizing
torus T, that are hl(y) apart, and we let w; € T, S be —/—17/(x;). We let
~i be the subsegment of v from z; to z;+1 (where x9 = xg).

For i = 0,1, we take a; € Conn%’L(t(-T-),wi), where L = L(e,S) is
the constant from the Connection Lemma. (That is, we choose L so that the
set Connliw (t(-T),w;) is nonempty.) Observe that the piecewise geodesic
arc aofygal_l begins and ends at the point *, so we let Xy € m1(S,*) denote
the corresponding element of (S, ). Similarly, we let X; € m1(S, %) be the
element that corresponds to the curve ajyiaqy L
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It follows from the remark after Lemma 4.8 that inequality (i) of the
statement of the lemma holds. On the other hand, by the New Angle Lemma
the angle ©(i(- Xo-), (o)) is as small as we want providing that 1(ag) > L is
large enough. (Here we use that the inefficiency I(agyoa; ') is bounded above.)
Since by construction the angle @ (i(ap),t(-T-)) is less than {5, we conclude
that for L large enough, we have ©(t(-T"-),i(- Xo-)) < §. Other cases are
treated similarly.

Let - A- be a random element of Conne p/(—i(-1),i(-T")), where R =

R +log4 —2L —21(-T-). Then
N([XoTAT]) — 2R| < e, 1([X1TAT]) — 2R| < &,

so v = [XoTAT]+[X1TAT] in I1. i homology, because the three curves bound
a good pair of pants.

Moreover, [XoTAT] = (Xo)r + (A)f, and [XiTAT] = (X1)r + Af in
IT;00-, r homology by the Two-part Itemization Lemma. Since (A); = —Ap
we conclude v = (Xo)7 + (X1)7 in II300-, g homology. O

Randomization (Randomization remarks for Lemma 9.2). We have defined
the maps gc : 't g = RG (by qc(y) = Xo+ X1) and g¢ : I'1 g = RII; g, such
that dgc(v) = v — (¢c(7))r (where A — Ap maps RG — RI'y r).

The map qc is e K-semirandom with respect to or and . The map gc
is 2 T)K (S, ¢) semirandom with respect to or and oy, where K = K(S,¢).

We have the following definition. For any X, T € m1(S, *), X # id, we let
0% = max{®(t(-T-),i(- X ), ©(t(- X -),i(- T -))}.

LEMMA 9.3. For L > Lo(S) and X,T € m(S,*), X # id, then we can
write X = X0 Xy, for some Xo, X1 € m1(S, %), such that
(i) 16 X = (52 + L —log2)| < &
(ii) I(-Xo-X1-) <2L + 3;
(iil) 6%, < max{0% + el 10 X0,

}.

Proof. We let @ = -X-. Then « : [0,1(- X -)] — S is the unit speed para-
metrization with a(0) = a(l(- X)) = . We let y = w Then for L
large enough, we can find 8 € Conn ;(¢(-T), V=1d/(y)). (As always, L is
determined by the Connection Lemmz;.)

Then «[0, y]3~! begins and ends at *, so it represents some Xq € 1 (S, *).
Likewise Baly, 1(- X -)] represents some X; € m1(S, *), and X = XoX;. More-
over, it follows from the remark after Lemma 4.8 that

’1('Xi‘) _ <l('§') +L-— 10g2>

ol

<

N =

Condition (ii) follows immediately from (i).
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Let 0 = ©(i(- X +),i(- Xo-)). Then by the hyperbolic law of sines, assum-
ing that 1(- X; -) > 1 (which follows if we assume that 1(«) > L—1 is at least 1),
we obtain ( )
. sinh(L + 1 L492-1(- X -
) < 1 7 < +2—1(- Xo )
i) = Snacx ) =
Therefore,
Ot(-T),i(-Xo+)) < Ot(-T+),i(- X -)) + L4710 Xo),

By similar reasoning we find that ©(t(- X -), —i(8)) < e* % < 75, assum-

ing that L is large enough. Also by construction, ®(—i(3),t(-T-)) < % <15

s0 O(t(- Xo-),i(-T-)) < %. We proceed similarly for X;. O
Randomization (Randomization remarks for Lemma 9.3). We have defined
gp : G — G? such that gp(X) = (Xo,X1). If1(-X:) € [a,a + 1], then
1(- Xo-),1(- X1-) € [$+ L', % + L' + 1], where L' = L —log2 — 3.
Moreover, given (X, X1) € G?, there is at most one X such that gp(X) =
(X0, X1) (because X = X0X;). We conclude that

2L'+2

(@p)«oa <€ 024 X041/,

and hence ¢p is e2L'+2_gemirandom. It follows that the map ¢p : G — RG
defined by X — X + X is 2¢2+2_gemirandom.

9.3. Proof of Theorem 3.3. The following theorem implies Theorem 3.3.
Recall that {g1,...,g2,} denotes a standard basis for 7 (S, *), where n is the
genus of S.

THEOREM 9.2. Let ¢ > 0. There exists Ry = Ro(S,e) > 0 with the
following properties. There exists T € (S, *), where T depends only on & and
S, such that for every R > Ro and every v € I'. g, we have

29
v=>Y_ai(gi)r
i=1
in I300:, g homology for some a; € Q.

Remark. To prove Theorem 3.3 we take h; = (g;)p. Since (g;)7 is equal
to the closed curve on S that corresponds to g; in the standard homology Hj,
it follows that h; is a basis for Hy (with rational coefficients).

Proof. We take L that is sufficiently large for Lemmas 9.2 and 9.3. We let
[ € N be such that X € W; whenever 1(- X ) < 2L + 5. Then by Theorem 9.1
we can find 7" such that 1(-7-) > L and 1(-T'-) > K(g,2L 4 3), where K(g, A)
is the constant from Theorem 8.1, and such that X7 = (¢(X))r in 300, R
homology for all X € W;. We take R > Ry(S,e,L) from Lemma 9.2, and
R > Ry(L,T) from Theorem 9.1.
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Fix any v € I'; g. By Lemma 9.2 we can find Xo, X; € m1(S, *) such that
(- X;-) = (R+ 2L — log 4)] < %
and

(18) v = (Xo)r + (X1)7

in IT3p0., g homology. Observe that ¢(v) = ¢(Xo) + ¢(X1).
By Lemma 9.3 we can write Xg = Xg9Xo1, where

(19) 1(- Xo;-) € [% +2L, g +2L+1]

and the conclusions of Lemma 9.3 hold. And likewise for X;.

Let N = |logy R| — 1. For every 0 < k < N, we define sets X}, by letting
Xo = {Xo, X1} and the set X1 is the set of children of elements of X}. Each
set X has 28! elements and the elements of X}, are not necessarily distinct.
(For the pedantic reader, we proceed as follows: X} is a set of ordered pairs of
the form (a, X), when 0 < a < 2¥ and X € 71(S, ). If X, X; are constructed
from X according to Lemma 9.3, we let the children of (a, X) be (2a + i, X;)
for i = 0,1. Then we let Xy = {(¢,X;) : i = 0,1} and let Xy be the set of
children of Xj.)

Moreover, for any X € A}, we have

(X ) e [R2™% + 2L, R27*F + 2L + 1.

We claim that
™
0% < =
X3
for every X in any AXj. For any such X, we can find a sequence Yy, Y1, ..., Y,
so that Yp = Xg or Yp = X; and Yy, = X, and where Y;4; is a child of ;. It
follows from equation (19) that 1(- Y11 -) <1(-Y;-) — 1, and 1(- Y -) > 2L — 2,

and

k
T Q L4+4-1(-Y; -
kagg—{—Ze ( )
i=0
i € L+a—(2L-3) _ T
< — < =
=6 eo1f 3’

assuming L > 8.

By Lemma 4.3 we have I(-T - X - T-) < log4 for every X in every Xj.
Therefore, we can apply The XY Theorem (see Theorem 8.1) and conclude
that

(20) Yr = (YoY1)r

whenever Y is a nontrivial node of our tree and Yy and Y7 are its two children.
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It follows from (18) and (20) applied recursively that
v= > Xr
XeXn
in IT300c, g homology. We know that if X € X, then X € W, so X7 =(¢(X))r.

Therefore
v=> @X)r=> (g7,

XeXn
and so we are finished. O

Randomization (Randomization remarks for the proof of Theorem 3.4).
We have determined T = T'(S,¢), so el = K(S,e). We have implicitly
defined the map g : I'. p = RII300c g such that dg(v) =~ — (¢(7))r. We note
that ¢ = ¢ ogc, where go(7y) = X + X’ from Lemma 9.2 and ¢p(X) = Xo+ X
from Lemma 9.3.

Moreover,
N-—1
9(v) = gc() + > gxv (@ (ablac())) + gw(ap (ac (7)),
i=0

where g¢ is the map from Lemma 9.2, gp and ¢gp are the maps from Lemma 9.3,
gxy is the map from Theorem 8.1, N is the number of times we iterate the
division (the application of Lemma 9.3), and gy is from Theorem 9.1.

By far the most important point is that gp is K = K (S, €)-semirandom, so
q% is K'-semirandom, for any i < N (recall that N < [log, R]), and therefore
K? < Rl°&2K 50 the map ¢, is P(R)-semirandom, where P(R) denotes a
polynomial in R).

9.4. The proof of Theorem 3.4. The map ¢ from Theorem 3.4 is defined
to be equal to the map ¢ from the Randomization remarks for Theorem 9.2.
We take h; = (g;)r. Then 0¢(v) = v — (q(v))r and (¢(7))r € R{h1, ..., hon},
for any v € RI'; g. Moreover, the map ¢ is P(R)-semirandom as shown in
those Randomization remarks. This implies estimate (iii) of the statement of
Theorem 3.4, and we are finished.

10. Appendix 1

Introduction to randomization. Let (X, ) and (Y, v) denote two measure
spaces (where p and v are positive measures).

Definition 10.1. We say that a map ¢ : (X, u) — (Y,v) is K-semirandom
with respect to pu and v if g.u < Kv.

By RX we denote the vector space of finite formal sums (with real coef-
ficients) of points in X. There is a natural inclusion map ¢ : X — RX, where
t(x) € RX represents the corresponding sum. Then every map f :RX — S,
where S is any set, induces the map f : X — 5 by letting f = fo L.
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Let f: X — RY be a map. Then we can write f(z) = >, fz(y)y, where
the function f, : Y — R is nonzero for at most finitely many points of Y. We
define |f] : X — RY by

|l Z | Faly

We define the measure |f|.u on Y by

)= | (S0 ) anto)

for any measurable set V' C Y, and xyy(y) = 1 if y € V, and xy(y) = 0 if
y¢ V.

Definition 10.2. Let (X, u) and (Y, v) be two measure spaces (with posi-
tive measures p and v). A map f: X — RY is K-semirandom if |f|.u < Kv.
A linear map f :RX — RY is K-semirandom with respect to measures y and
v on X and Y respectively if the induced map f: X — RY is K-semirandom.

The following propositions are elementary.

ProproSITION 10.1. Let X, Y and Z denote three measure spaces. If
f:RX — RY is K-semirandom, and f : RY — RZ is L-semirandom, then
go f:RX — RZ is KL-semirandom.

ProposiTiON 10.2. If f; : RX — RY is K;-semirandom, i = 1,2, and
Ai € R, then the map (M fi + Aafa) : RX — RY s (|A1|K1 + || K2)-
semirandom.

Remark. We say that f: X — Y is a partial map if it is defined on some
measurable subset X7 C X. The notion of a semirandom maps generalizes to
the case of partial maps by letting a partial map f : X — Y be K-semirandom
if the restriction f : X; — Y is K-semirandom, where the corresponding
measure on X7 is the restriction of the measure from X. Every statement we
make about semirandom maps has its version for a partial semirandom map.
In particular, if f : X — Y is K-semirandom, then the restriction of f onto
any X; C X is K-semirandom. Moreover, trivial partial maps (those that are
defined on an empty set) are K-semirandom for any K > 0.

A measure class on a space X is a subset of M(X) where M(X) is the
set of measures on X.

Definition 10.3. Let X and Y be measure spaces, and let M C M(X)
and N' C M(Y) be measures classes on X and Y respectively. (All measures
from M and N are positive measures.) We say f : X — Y is K semirandom
with respect to M and N if for every u € M there is v € N such that f is
K-semirandom with respect to pu and v; that is, fou < Kv.
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In a similar fashion as above, we define the notion of a semirandom map
f : RX — RY with respect to classes of measures M and N on X and YV
respectively. The following proposition follows from Proposition 10.1.

ProrosITION 10.3. Let X, Y and Z denote three measure spaces, with
classes of measures M, N and Z respectively. If f : RX — RY is K-semi-
random with respect to M and N, and f : RY — RZ is L-semirandom with
respect to N and Z, then go f : RX — RZ is K L-semirandom with respect to
M and Z.

We say that a class of measures M is convex if it contains all convex
combinations of its elements. The following proposition then follows from
Proposition 10.2

ProrosiTioN 10.4. If f; : RX — RY is K;-semirandom with respect to
classes of measures M and N, i = 1,2, and if N is convex, then for \; € R,
the map (A1 f1 + Aaf2) : RX — RY s (|A\1|K1 + |\2|K2)-semirandom with
respect to M and N .

Remark. The space RX is naturally contained in the space M(X), and in a
similar way we can define the notion of a semirandom map f : M(X)— M(Y).

Natural measure classes. Let X;, 1 =1,...,k, denote measure spaces with
measure classes M;. Let X7 x --- x X denote the product space, and by
i+ (X7 X -+ x Xi) — X; denote the coordinate projections. By M x My X
-+ X My, we denote the set of measures on X; X --- X X}, that arise as the
convex combinations of all standard products gy x - - - x pug with u; € M;. We
also define a natural class of measures MK MoK - - KM on X7 x---x X as

M KM XM,
e MKy x - x Xi) = (V)G € M)((mo)ost < )}

This produces a large class of measures even if each M, consists of a
single measure. If each M; is convex, then M; X Mo K --- K My, is as well.
If X; = X and M; = M, then the standard product measure on X% is M**
and the other class of measures is denoted by M™.

We define the class £1 of Borel measures on R by saying that u € £y if
plr,x+1) < 1forall z € R. This is a closed convex class of measures. Likewise
we define the class of measures £; on R/AZ for A > 1 by saying that pu € £,
if plz,z+1) <1 for all z € R/AZ. The class of measures £; is the class of
measures that are controlled by the Lebesgue measure at the unit scale.

We consider the following spaces and their measure classes. In this paper,
we define several maps (or partial maps) between these spaces (or their powers)
and prove they are semirandom. We have
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(i) The space of curves I'\ g with the measure class containing the single
measure or that is defined by setting or(y) = Re 2! for every v € I' g
We may assume that ¢ is small enough so that I': g C I't g.

(ii) The space of pants II; p with the measure class containing the single
measure opy given by or(Il) = e 3% We may assume that ¢ is small
enough so that 3o,z C I g.

(iii) Let Tz = {(2,7) : ¥ € T1.r, « € T,} denote the space of pointed curves.
(Recall that T, = R/1(y)Z is the parametrizing torus for v.) The space

I'1 g is really just the union of parametrizing tori T., for curves v € I't g.
By EF we denote the measure class on I'y g, such that pu € EF if the

restriction p, = M|1r7 is in e*ZRﬁl, where £ is the measure class on the
circle T, that was defined above.

k
(iv) Let 't g = {(z1,...,2k,7) : v € 't R, x; € T4} denote the space of curves
k . k
with & marked points. The space I'1 g is canonically contained in <F1, R) .

k
The measure class X, on I'y g is the restriction of Z?k on the image of
T

k .
Fl,R n (Fl,R)k.

(v) The space G = m(S,*) with the measure class ¥ that is the convex
closure of the collection of measures o, on GG, where o, is defined so that
for X € G, we have 0,(X) = v, (1(- X -))e X)) where v,(z) = 1 if
x € [a,a+ 1], and v,(z) = 0 otherwise.

We observe that there exists a constant K = K(S) such that for any
measure g in any of the above defined measure classes, the total measure of i
is bounded by K.

Finally we consider the map 0 : II1 g — RI'1 g defined by OII = v + 71
+ 72, where ~; are the three oriented boundary curves of II. We observe that
0 is K(S)-semirandom from oy to or.

Standard maps are semirandom. We consider several standard mappings
and prove they are semirandom.

LEMMA 10.1. Letl >0 and a,b <1 —1. Then for any Z € G = w1 (S, *)
such that 1(- Z -) =, there are at most Ke* 2™ ways of writing Z = XY, with
1(-: X ) €la,a+1] and 1(-Y -) € [b,b+ 1], for some K = K(S).

Proof. Suppose that X and Y satisfy the given conditions. Consider a
triangle in H? whose sides are lifts of - X-, -Y- and - Z-. (These lifts are
denoted the same as the arcs we are lifting.) Then we drop the perpendicular
t from the vertex z opposite to - Z - to the side - Z -, and we let @’ and V' be
the lengths of the subintervals of - Z - that meet at the endpoint of ¢ on - Z -



THE EHRENPREIS CONJECTURE 63

(then @’ + b =1(- Z-)). For simplicity, set ¢t = 1(t). We find that
a<l(-X)<t+d <1(-X:)+log2<a+2
and, likewise, b <t+b <b+2. So

{a—f—b—l a+b—1
te ,
2 2

+2}

and

e {a—b—i—l_Q a—b+1
“ 2 g

Therefore, the vertex z must lie in a disc of radius

v

%b_l + 4 around the point

on Z that is “_é”'l away from the initial point of Z. It follows that there are

at most K (S)ea+§ = lifts of the base point in this disc, and we are finished. O

Let p: G x G — G be the product map; that is, g(X,Y) = XY

LEMMA 10.2. The map p: G x G — G is K-semirandom with respect to
Ya x g on G? and Sg on G for some K = K(S).

Proof. Let a,b € [0,00), and assume b > a. Recall the measures o, on G,
and let 0 = p. (0, X 0p). We must show that o < K¥.
Let Ze€ G,andlet I =1(-Z-). If a <b<1—1, then

a+b—1 1 _a+b-l

o(Z)<Ke 2 e % =Kele 2

(Ifl>a+b+2, then o(Z) =0.)
If ] — 1 < b, then because there are at most Ke® X’s in G for which
04(X) > 0, we find

0(Z) < Kete % = Kelem (07D,

Then we see that

1 [b+1] la+b+3] o
=° < Z e~ Ky + Z e 2 O,
k=|b—a—1] k=|b)
so o < K¥g. O

We define a partial map proj : G — fl,R as follows. Given A € G, we
let v = [A], and we let z € v be the projection of the base point * to 7. As
always, the projection is defined by choosing lifts of - A - and ~ in H? that have
the same endpoints. Then we project a lift of * to the lift of v, where the lift
of * belongs to the lift of - A-. We let proj(A4) = (v, 2).

LEMMA 10.3. The map proj : G — fLR is K (S)-semirandom with respect
to Xg and EF'
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Proof. Let J be a unit interval on a curve v € I'y g. We have seen in
the two previous proofs that there are at most K et many Z € G for which
1(- Z-) <1, and proj(Z) € J. Therefore, if o € ¥, then

oo
proj,o(v,J) < K Z ek < Ke?E,
k=[2R)]

and we are finished. O

Another standard map we consider is the projection map IHL L — T
given by (7y,x) — 7. This map is clearly 1-semirandom. Going in the opposite
direction, we have the map v — (v, z) that assigns to v € I'; g a random point
& € ~. This map is really defined as a map M(I'1z) — M(I'1g), and we
observe that it is 1-semirandom as well.

Remark. We also observe that for T' € G, the map {1} — G defined by
1 — T is e T)-semirandom with respect to the unit measure on {1} and Xg.

The principles of randomization. After almost every lemma or theorem we
prove in Sections 4-9, we have added a “Randomization remark” that considers
the functions we have implicitly defined, states their domain and range, and
argues that the functions are semirandom with respect to a certain measure
class. In the remarks we have followed the following principles:

1. When we write “a random element” (of a finite set S) that the reader
was previously told to read as “an arbitrary element,” we now mean “the
random element” of RS, namely,

1
5]

S
zes

If a € RS € M(S) and M is a measure class on S, we say that a is a K-semi-
random element of S, with respect to M, if there exists u € M such that
a < Ku.

2. We can replace at will any map f: X — Y (or f: X — RY) by the
linear extension f : RX — RY. This can cause confusion if you think about it
the wrong way, so we offer the following example to clarify what is going on.

In the hard case of the GSL, we take a random third connection (meaning
the random third connection) and then cancel out one square (4;;), i, j =0, 1,
of boundaries to get a formal sum of squares (B;;) of curves. We then find for
each new square (in the formal sum) a second third connection at random from
a set depending on (B;;) to complete the argument. The right way to think
of the randomization (and linearization) is that the first operation defines a
partial map

Qo (.f"l,R>4 - IR(fl,}z)él
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and the second operation defines
go : 'l g = RIIy g,

so we can write ggo g by extending gg to a map from Rf‘i g to RIIy g linearly.
The danger is that one may try to imagine gg acting on a formal sum of curves
by taking the random element from RConn, g(-, ).

So we will imagine that we are defining functions from X to Y, or from
X to RY, and only think of them as functions from RX to RY when we want
to compose them.

3. We want to use the measure class ¢ x Y¢ = 25 on G? = {(X,Y)}
when we want to form the product XY. We want to use the measure class
YoRYag = 2%2 on G? if we want to be able to let X = Z and Y = Z for some
Z e G.

For example, for the ASL, we use the measure class 2%2 X Yg X 2%2
x g on six-tuples (Ao, A1,U, By, B1,V) in G% = G? x G x G?> x G. This is
basically the largest measure class for which the maps m;; : G — G* defined
by mi;(Ao, A1,U, By, B1,V) = (4;,U, B;, V) are 1-semirandom with respect to
the measure class ¥5* on G*.

This is exactly what we want, because we have to form the words A;UB;V,
but we need the freedom to assign to Ag and A; (or By and Bj) the same value.

11. Appendix 2

We develop the theory of equidistribution and counting, based on the
uniformly exponential mixing of the geodesic flow, that we need to prove The-
orem 3.2.

11.1. Left and right actions. The group PSL(2,R) acts on the unit tan-
gent bundle T'H? on the left. (We refer to this action as the action by isome-
tries.) Namely, if v € T'H? and h € PSL(2,R), then h-v = h(v) is the
resulting vector in T'H?. Moreover, if u and v are two vectors in T H?, then
there exists a unique element h € PSL(2,R) such that h-v = u. This enables
us to identify the unit tangent bundle T1H? with PSL(2,R) as follows. Choose
a vector vy € T'H2. We identify vy with the identity element 1 in PSL(2,R).
A vector v € T'H? is identified with the unique element 2 € PSL(2,R) so that
h-vy = w.

The existence and uniqueness of this A means that we can define a right
action of PSL(2,R) on T'H? by the equation (h - vg) - g = hg - vo. This right
action is the unique right action that satisfies the following two properties:

(i) h-vg =g - h;
(ii) g (v-h)=(g-v)-h
for any h,g € PSL(2,R).
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Yo

Figure 7. The Factorisation Lemma

By an instruction we mean any transformation ¢ : T'H? — T'H? that is

natural in the sense that
q(g-v) = g-q(v)

for any g € PSL(2,R). For example, the time t geodesic flow g; and coun-
terclockwise rotation by angle ¢ (which we denote by R;) are instructions. It
follows from the previous paragraph that the instructions are exactly the maps
of the form ¢(v) = v - h for some h € PSL(2,R).

We define the instruction Y; by

Yi=Rz-g Rs.

so Y; is the “rightward normal flow,” one rotates to the right for 90 degrees,
then flows for the time ¢, and then rotates to the left for 90 degrees.

LEMMA 11.1. Any he PSL(2,R) can be uniquely written as h=Yy - g; - Re,
for some choice of a,t,c € R.

Proof. We let v = vg - h; we want to find a, b and ¢ such that v = Y, -g;- R..
Let pp and p be the base points of vy and v. We let o be the geodesic
through po orthogonal to vy (oriented to point to the right), and we let ¢ be
the closest point on « to p. Then, as shown in the Figure 11.1,
e we let a be the signed distance from py to g;
e we let B be the oriented geodesic through vy - Yy, and let ¢ be the signed
distance along g from ¢ to p;
e we let ¢ be the counter clockwise angle from vg - Y, - ¢¢ to v.

Then we have v =vg - Yy - g1 - Re. U

We equip PSL(2,R) with the following distance function. Let h; €
PSL(2,R), j = 1,2, and let v; € T'H? denote the vectors corresponding
to h;. (The vector v; is based at the point p; € H2.) We let

dpsr(2,r)(h1, he) = d(p1, p2) + O(u1, v2),
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where u; € T'H? is the parallel transport of the vector v; at the point ps.
(Recall that ®(u,v) is the unoriented angle between vectors u and v.) For
h € PSL(2,R), we denote by ||h|| the distance between h and the identity
element 1 € PSL(2,R).

We leave the proof of the following lemma to the reader.

LEMMA 11.2. There are universal constants &g, Ko > 0 such that provid-
ing ||h|| < do, then
h-gt=Ya" gitv - Re,
where |a| + |b] + |¢| < Kol|h]]-

We now discuss the equidistribution of the equidistant lines on a closed
Riemann surface S. Let o : R — S be a unit speed geodesic, and let & : R —
T'S be the leftward normal unit vector field, given by a(s) = ia/(s). (Here i
denotes the imaginary unit in the tangent space to S at the point a(s) € S.)
Let ¢ € R, and consider the vector field g;(&). Then the vectors from the field
gi(@) are orthogonal to the line that is equidistant (at distance ¢) from the
geodesic a.

We let dV be the volume form on T'S, normalised so that

/ av =1.
718

The following theorem provides explicit estimates for how evenly dis-
tributed g;(@) is in T'S.

THEOREM 11.1. Let f : T'S — R be any C' function. Then for a >
Cre™ %, we have

—qt 1
< Coe® (S + [ fllen)

L st as— [ gav
0

T'S

where the positive constants C1, Cy and q depend only on S.

Proof. We let 1, : PSL(2,R) — [0, 00) be such that

(i) vy is supported in By(1), which is the ball of radius 7 centered at 1;
(ii) [¢n = 1, where we integrate with respect to the Haar measure on

PSL(2,R);

(iil) [|4oy|lcr < Kin™ for some universal constant K.
(iv) ¥n(X) =1y (X 1) for X € PSL(2,R).

We can arrange that (iii) holds because 1, needs to reach the height of
n~3 in a space of size n (so the derivative of 1y, is proportional to n~4). For
simplicity, we let ¢ = ,,.

If u,v € T'H?, then there is a unique g € PSL(2,R) such that u - g = v.
We let 1(u,v) = 9(g). (Condition (iv) above implies that 1 (u,v) = ¥ (v,u).)
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Then for a < b and X € T'S, we let

and we let &, = Qg 4.
Then

| @apllcr < (b—a)l[¢]|cn
and

/ Qg pdV =b—a.
T'S
Applying the factorization lemma above (Lemma 11.2), we find that

[ 108X VX = [ [ @)k ey dsave

TS 0 By,(1)

- / / F(@(s) - Ya- gevp - R)wo(h) ds dV (h)

- / | 7@+ alt) - gengny - Reom)o() ds av ()
0 B,(1)

[ ] ats + attmyeih dsave) +0(1lcrma).

0 B,(1)

where the last equality follows from the upper bounds on b(t,h) and c(t, h)
from Lemma 11.2. This yields the inequalities

a—Kon
Flou@ls)) ds = Kollfllen < [ F(X)alg-1X) dV(X)
Kon TS
a+Kon
< [ rol@)ds+ Kollflcn
—Kon

On the other hand, by exponential mixing,

[ (@anx) s avex) - [ awav [ rav
'S TS TS
< Cealafllor < Cean~|fllon
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where C, g > 0 depend only on S. So we obtain, for a > 2Ky,

/ Flgu(@(s))) ds < / F((90)+8— Komatkon) AV + Kol fllcan
TS
< (a + 2Kon) / faV + Ce™%an™|fllcr + Konl|fllcn
TS

and likewise

/ Pl @) ds > (@~ 2Kon) [ £V = (O an™ + Kon)l|fller-
T'S
Letting n = e‘gqt, the theorem follows. O

11.2. Counting good connections. Let [ be another geodesic on S, and
define B3 : R — TS in analogy to a. For intervals I and .J in R, we let

My ={g:(B(s)) : (s,t) €I x J}
be a 2-submanifold of T'S.

For J = [0,71], My s is the result of flowing out the normal field to B(s)
for time j; along the geodesic flow.

We let Y be the vector field associated to the rightward normal flow on
T'S so that the time ¢ flow by Y is equal to the instruction Y; on T'S. Then
a'(s) = Y(a(s)) for any geodesic o : R — T'S. We let

1
t_

Yi=—- +Y,
cosht(gt)

2 ((@()) = (cosh )Y (gu(a(s)).

Then Y? is the unit speed rightward flow along normal fields to curves
that are distance t from the geodesic, where the normal field points away from
the geodesic. For t large, Y is close to the negative horocyclic flow.

The following theorem provides a precise estimate on the weighted number
of times that the equidistant curve g;(c(s)) (which is also a flow curve along Y?)
intersects the 2-manifold M7y ;.

THEOREM 11.2. Let f be a C! function with compact support on M, ;.
Then

1
—— Y faa / ftde‘
ge(a(s))eMr, M,y
s€[0,a]

- 1
<ce® (- +Ifller)
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provided that J = [jo, j1], where |1, |jol,|j1] < 6, t > 1, and 1 > a > Cie ¥,
where C,C1,0 > 0 depend only on S and ||f|lec < 1. (Here vytdV s the
contraction of the volume form dV by the vector Y.)

Proof. The assumptions on My j,t and a imply that the map @ : My ; X
(0,e) — TS, defined by Q(q,r,s) = Y;(QT(B\(q))), is injective for some ¢ =
£(S). We let 4 be a C'!' bump function on (0, €), and we let f: Q(MLJ x (0, 5))
— R be defined by

F(Q(a,r,9)) = fla:(B(a)))¥(s).

Then
1fllcr < C(S)[|fllen
and
/fdvz/fbytdv.
T'S M
Moreover,

< {1 lloo-

a
> fla@s) - cosht [ Fla@s)ds
gt(a(s)eMr, s 0
s€[0,a]

This inequality holds because every time the curve K(gt(&(()))) (for s €
[0, cosht]) crosses M j, it goes through @) (and contributes the same amount
to the sum and the integral), except that the curve may start in @) and miss
M; j, and the terminal point may end in @), contributing more to the sum than
to the integral. For both endpoints, the error is at most |f||~, and the error

has different signs at the two endpoints, so the total error is at most || f/||cc-
Therefore, by Theorem 11.1,

1 ~
acosht Z flg(a(s))) — / fLyth‘
gt(a(s))GMIJ MI,J
s€[0,a]

1 —qt (1
_aCOShtHfHoo-i-Ce 5 (E—i_HfHCI)

—qt (1
< e (4 +1ifller). -

If o and j are two geodesic segments, and ¢, L > 0, we let Conn, . (c, 3)
be the set of (r,s,t) such that g.(a(r)) = 3(s) and t € [L, L +¢].

The following theorem, which is the object of this appendix, provides an
estimate for the number of orthogeodesic connections, with length between L

and L + 62, between two geodesic segments, where the length of the geodesic
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segments, the interval length 62, and the proportional error to the count are
all exponentially small in L.

L
THEOREM 11.3. Letting 6 = e_iITO, and o, B geodesic segments of length
82, the number of orthogeodesics connections from one side of a to one side of
B, of length in the interval [L, L + &%), is given by

1
———0%L(1+0(5
87T2X(S) € ( + ( )>7
where the big O constant depends only on S.

Proof. We let M = M, j, where I = [0,62] and J = [—§2,0]. We want to

count the number of s € [0, 2] for which g (a(s)) € M.
Let

Mt = M[_53752+53]7[_52_53753}

be a slightly larger surface, and let f* be a C' function on M™ that is equal
to 1 on M. We can arrange

1l < 10573,

and f* takes values in [0, 1].
Then
/ ’er - XM’ LyLdV < 1055,
M+
and given our normalization of the Liouville volume form dV, we have

1
tyrdV = —————6 + 0(6%).
JZ ST NG TR

Putting all this together and applying Theorem 11.2, we have

1 1 R
S ARV ACHORS e D D M (A CIO))

gr(a(s))eM+
s€[0,qa]
1
< / F* iyrdV +C8 (= + |1 fllen)
M+

54
< -
~ An?|x(S)|

4

< -
~ 4Ar?|x(8)|

+0(8%) +106° + Co® (672 +673)

+C8.

We can analogously define f~ supported on M, with f~ =1 on

M~ = M[53752—53H—52+53»—53}
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and prove that

1 &4
- > -
52 coshL#Conng’L(a’ﬁ) ~ 472 x(S)|

%(1 + O(e_QL)), the theorem follows. O

— 0.
Since cosh L =
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