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The good pants homology and the
Ehrenpreis Conjecture

By Jeremy Kahn and Vladimir Markovic

Abstract

We develop the notion of the good pants homology and show that it

agrees with the standard homology on closed surfaces. (Good pants are

pairs of pants whose cuffs have the length nearly equal to some large num-

ber R > 0.) Combined with our previous work on the Surface Subgroup

Theorem, this yields a proof of the Ehrenpreis Conjecture.

1. Introduction

Let S and T denote two closed Riemann surfaces. (All closed surfaces in

this paper are assumed to have genus at least 2.) The well-known Ehrenpreis

Conjecture asserts that for any K > 1, one can find finite degree covers S1 and

T1, of S and T respectively, such that there exists a K-quasiconformal map

f : S1 → T1. The purpose of this paper is to prove this conjecture. Below we

outline the strategy of the proof.

Let R > 1, and let Π(R) be the hyperbolic pair of pants (with geodesic

boundary) whose three cuffs have the length R. We define the surface S(R)

to be the genus two surface that is obtained by gluing two copies of Π(R)

along the cuffs with the twist parameter equal to +1. (These are the Fenchel-

Nielsen coordinates for S(R).) By Orb(R) we denote the quotient orbifold

of the surface S(R) (the quotient of S(R) by the group of automorphisms of

S(R)). For a fixed R > 1, we sometimes refer to Orb(R) as the model orbifold.

The following theorem is the main result of this paper.

Theorem 1.1. Let S be a closed hyperbolic Riemann surface. Then for

every K > 1, there exists R0 = R0(K,S) > 0 such that for every R > R0, there

are finite covers S1 and O1 of the surface S and the model orbifold Orb(R)

respectively, and a K-quasiconformal map f : S1 → O1.

The Ehrenpreis Conjecture is an immediate corollary of this theorem.
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Corollary 1.1. Let S and T denote two closed Riemann surfaces. For

any K > 1, one can find finite degree covers S1 and T1 of S and T respectively,

such that there exists a K-quasiconformal map f : S1 → T1.

Proof. Fix K > 1. It follows from Theorem 1.1 that for R large enough,

there exist

(i) finite covers S1, T1, of S and T respectively;

(ii) finite covers O1 and O′1 of Orb(R);

(iii)
√
K-quasiconformal mappings f : S1 → O1 and g : T1 → O′1.

Let O2 denote a common finite cover of O1 and O′1. (Such O2 exists since

O1 and O′1 are covers of the same orbifold Orb(R).) Then there are finite

covers S2 and T2, of S1 and T1, respectively, and the
√
K-quasiconformal maps

f̃ : S2 → O2 and g̃ : T2 → O2, that are the lifts of f and g. Then g̃−1 ◦ f̃ :

S2 → T2 is K-quasiconformal map, which proves the corollary. �

In the remainder of the paper we prove Theorem 1.1. This paper builds

on our previous paper [4], where we used immersed skew pants in a given

hyperbolic 3-manifold to prove the Surface Subgroup Theorem. We note that

Lewis Bowen [1] was the first to attempt to build finite covers of Riemann

surfaces by putting together immersed pairs of pants. We also note that it

follows from the work of Danny Calegari [2] that the pants homology is equal

to the standard homology. This means that every sum of closed curves on a

closed surface S that is zero in the standard homology H1(S) is the boundary

of a sum of immersed pairs of pants in S.

We are grateful to Lewis Bowen for carefully reading the manuscript and

suggesting numerous improvements and corrections. The second named author

would like to acknowledge that the first named author has done most of the

work in the second part of the paper concerning the Correction Theory.

Outline. In our previous paper [4] we proved a theorem very similar to

Theorem 1.1, namely that given a closed hyperbolic 3-manifold M3, andK > 1,

R>R0(K,M3), we can find a finite cover O1 of Orb(R) and a map f : O1→M3

that lifts to a map f̃ : H2→H3 such that ∂f̃ : ∂H2 → ∂H3 has a K-quasi-

conformal extension. We proved that theorem by finding a large collection of

“skew pairs of pants” whose cuffs have complex half-lengths close to R, and

which are “evenly distributed” around every closed geodesic that appears as a

boundary.

We then assemble these pants by (taking two copies of each and then)

pairing off the pants that have a given geodesic as boundary, so that the re-

sulting complex twist-bends (or reduced Fenchel-Nielsen coordinates) are close

to 1. We can then construct a cover O1 of Orb(R) and a function f : O1 →M
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whose image is the closed surface that results from this pairing. The function

f will then have the desired property.

We would like to proceed in the same manner in dimension 2, that is,

when a 3-manifold M3 is replaced with a closed surface S. We can, as before,

find a collection of good immersed pants (with cuff length close to R) that

is “evenly distributed” around each good geodesic (of length close to R) that

appears as boundary. If and when we can assemble the pants to form a closed

surface with (real) twists close to 1, we will have produced a K-quasiconformal

immersion of a cover of Orb(R) into S.

There is only one minor detail: the unit normal bundle of a closed geodesic

in S has two components. In other words, an immersed pair of pants that has

a closed geodesic γ as a boundary can lie on one of the two sides of γ. If, in

our formal sum of pants, we find we have more pants on one side of γ than

the other, then we have no chance to form a closed surface out of this formal

sum of pants. It is for this very reason that the Ehrenpreis Conjecture is more

difficult to prove than the Surface Subgroup Theorem.

Because our initial collection is evenly distributed, there are almost the

same number of good pants on both sides of any good geodesic, so it is natural

to try to adjust the number of pairs of pants so that it is balanced (with the

same number of pants on both sides of each geodesic). This leads us to look

for a “correction function” φ from formal sums of (normally) oriented closed

geodesics (representing the imbalance) to formal sums of good pants, such that

the boundary of φ(X) is X.

The existence of this correction function then implies that “good boundary

is boundary good”; that is, any sum of good geodesics that is a boundary in

H1(S) (the first homology group of S) is the boundary of a sum of good pants.

Thus we define the good pants homology to be formal sums of good geodesics

(with length close to R) modulo boundaries of formal sums of good pants. We

would like to prove that the good pants homology is the standard homology

on good curves.

The natural approach is to show that any good curve is homologous in

good pants homology to a formal sum of 2g particular good curves that rep-

resent a basis in H1(S). (g is the genus of S.) That is, we want to show that

there are {h1, . . . , h2g} good curves that generate H1(S) (here H1(S) is taken

with rational coefficients) such that every good curve γ is homologous in the

good pants homology to a formal sum
∑
aihi for some ai ∈ Q. Then any sum

of good curves is likewise homologous to a sum of good generators hi, but if

the original sum of good curves is zero in H1(S), then the corresponding sum

of hi’s is zero as well.

To prove the Good Correction Theorem , we must first develop the theory

of good pants homology. Let ∗ denote a base point on S. For A ∈ π1(S, ∗)\{id},
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we let [A] denote the closed geodesic freely homotopic to A. Our theory begins

with the Algebraic Square Lemma, which states that, under certain geometric

conditions, ∑
i,j=0,1

(−1)i+j [AiUBjV ] = 0

in the good pants homology. (The curves [AiUBjV ] must be good curves, the

words AiUBjV reasonably efficient, and the length of U and V sufficiently

large.) This then permits us to define, for A, T ∈ π1(S, ∗),

AT =
1

2

Ä
[TAT−1U ]− [TA−1T−1U ]

ä
,

where U is fairly arbitrary. Then AT in good pants homology is independent

of the choice of U .

We then show through a series of lemmas that (XY )T = XT +YT in good

pants homology, and therefore

XT =
∑

σ(j)(gij )T ,

where by X = g
σ(1)
i1

. . . g
σ(k)
ik

we have written X as a product of generators.

(Here g1, . . . , g2g are the generators for π1(S, ∗) and σ(j) = ±1.) With a little

more work we can show

[X] =
∑

σ(j)(gij )T

as well, and thus we can correct any good curve to good generators.

We are then finished except for one last step: We must show that our

correction function, which gives an explicit sum of pants with a given boundary,

is well behaved in that it maps sums of curves, with bounded weight on each

curve, to sums of pants, with bounded weight on each pair of pants. We

call such a function semirandom, because if we pick a curve at random, the

expected consumption of a given pair of pants is not much more than if we

picked the pair of pants at random.

We define the correction function implicitly, through a series of lemmas,

each of which asserts the existence of a formal sum of pants with given bound-

ary, and which is in principle constructive. The notion of being semirandom is

sufficiently natural to permit us to say that the basic operations, such as the

group law, or forming [A] from A, as well as composition and formal addition,

are all semirandom. So in order to verify that our correction function is semi-

random, we need only to go through each lemma observing that the function

we have defined is built out of the functions that we have previously defined

using the standard operations that we have proved are semirandom.

To make the paper as easy to read as possible, we have relegated the

verification of semi-randomness to the “Randomization remarks” that follow

our homological lemmas and that use the notation and results (that basic con-

structions are semirandom) that we have placed in the appendix. We strongly
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recommend that the reader skip over these Randomization remarks in the first

reading and to interpret the word “random” in the text to simply mean “ar-

bitrary.”

A word on notation. When we use the letter K to denote a constant then

we mean a universal constant or if K depends on parameters X,Y, Z, . . . then

we write K(X,Y, Z, . . . ) or we may leave out some of the parameters. In

sections where we fixed certain parameters we may leave out the dependence

of constants on these parameters.

2. Constructing good covers of a Riemann surface

2.1. The reduced Fenchel-Nielsen coordinates and the model orbifolds. Let

S0 be an oriented closed topological surface with a given pants decomposition

C, where C is a maximal collection of disjoint simple closed curves that cut

S0 into the corresponding pairs of pants. We will say that C makes S0 into a

panted surface.

Denote by C∗ the set of oriented curves from C. (Each curve in C is taken

with both orientations.) The set of pairs (Π, C∗), where Π is a pair of pants

from the pants decomposition and C∗ ∈ C∗ is an oriented boundary cuff of Π,

is called the set of marked pants and is denoted by Π(S0). For C ∈ C, there

are exactly two pairs (Πi, C
∗
i ) ∈ Π(S0), i = 1, 2, such that C∗1 and C∗2 are the

two orientations on C. (Note that Π1 and Π2 may agree as pairs of pants.)

Let (S, C) be a panted Riemann surface. Then for every cuff C ∈ C, we

can define the reduced Fenchel-Nielsen coordinates (hl(C), s(C)) from [4]. Here

hl(C) is the half-length of the geodesic homotopic to C, and s(C) ∈ R/hl(C)Z
is the reduced twist parameter that lives in the circle R/hl(C)Z. (When we

write s(C) = x ∈ R, we really mean s(C) ≡ xmod(hl(C)Z).) The following

theorem was proved in [4] (see Theorem 2.1 and Corollary 2.1 in [4]).

Theorem 2.1. There exist constants ε̂, “R > 0 such that the following

holds. Let S denote a panted Riemann surface whose reduced Fenchel-Nielsen

coordinates satisfy the inequalities

|hl(C)−R| < ε and |s(C)− 1| < ε

R

for some ε̂ > ε > 0 and R > “R. Then there exist a marked surface MR,

with the reduced Fenchel-Nielsen coordinates hl(C) = R and s(C) = 1, and a

K-quasiconformal map f : S →MR, where

K =
ε̂+ ε

ε̂− ε
.

Let R > 1, and let Orb(R) denote the corresponding model orbifold (de-

fined in the introduction). In the next subsection we will see that the sig-

nificance of the above theorem comes from the observation that any Riemann
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surface MR with reduced Fenchel-Nielsen coordinates hl(C) = R and s(C) = 1

is a finite cover of Orb(R).

2.2. A proof of Theorem 1.1. Below we state the theorem that is then

used to prove Theorem 1.1.

Theorem 2.2. Let S denote a closed Riemann surface, and let ε > 1.

There exists R(S, ε) > 1 such that for every R > R(S, ε), we can find a finite

cover S1 of S that has a pants decomposition whose reduced Fenchel-Nielsen

coordinates satisfy the inequalities

|hl(C)−R| < ε and |s(C)− 1| < ε

R
.

This theorem will be proved at the end of section.

Proof of Theorem 1.1. Let K > 1. It follows from Theorem 2.1 that for

ε > 0 small enough, and every R large enough, there is a K-quasiconformal

map f : S1 → MR, where MR is a Riemann surface with reduced Fenchel-

Nielsen coordinates hl(C) = R and s(C) = 1, and S1 is the finite cover of S

from Theorem 2.2. Recall the corresponding model orbifold Orb(R) (defined in

the introduction). As we observed, the surface MR is a finite cover of Orb(R).

This completes the proof of the theorem. �

2.3. The set of immersed pants in a given Riemann surface. From now on

S = H2/G is a fixed closed Riemann surface and G a suitable Fuchsian group.

By Γ we denote the collection of oriented closed geodesics in S. By −γ we

denote the opposite orientation of an oriented geodesic γ ∈ Γ. We sometimes

write γ∗ ∈ Γ to emphasize a choice of orientation.

Let Π0 denote a hyperbolic pair of pants. (That is, Π0 is equipped with a

hyperbolic metric such that the cuffs of Π0 are geodesics.) Let f : Π0 → S be a

local isometry. (Such an f must be an immersion.) We say that Π = (f,Π0) is

an immersed pair of pants in S. The set of all immersed pants in S is denoted

by Π. Let C∗ denote an oriented cuff of Π0. (The geodesic C∗ is oriented as a

boundary component of Π0.) Set f(C∗) = γ ∈ Γ. We say that γ is an oriented

cuff of Π. The set of such pairs (Π, γ) is called the set of marked immersed

pants and denoted by Π∗. The half-length hl(γ) associated to the cuff γ of Π

is defined as the half-length hl(C) associated to the cuff C of Π0.

Let γ ∈ Γ be a closed oriented geodesic in S. Denote by N1(γ) the

unit normal bundle of γ. Elements of N1(γ) are pairs (p, v), where p ∈ γ

and v is a unit vector at p that is orthogonal to γ. The bundle N1(γ) is a

differentiable manifold that has two components, which we denote by N1
+(γ)

and N1
−(γ) (the right-hand side and the left-hand side components). Each

component inherits the metric from the geodesic γ, and both N1
+(γ) and N1

−(γ)
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are isometric (as metric spaces) to the circle of length 2hl(γ). By dis we denote

the corresponding distance functions on N1
+(γ) and N1

−(γ).

Let (p, v) ∈ N1(γ), and denote by (p1, v1) ∈ N1(γ) the pair such that

(p, v) and (p1, v1) belong to the same component of N1(γ), and dis(p, p1) =

hl(γ). Set A(p, v) = (p1, v1). Then A is an involution that leaves invariant

each component of N1(γ). Define the bundle N1(
√
γ) = N1(γ)/A. The two

components are denoted by N1
+(
√
γ) and N1

−(
√
γ), and both are isometric (as

metric spaces) to the circle of length hl(γ). The disjoint union of all such

bundles is denoted by N1(
√

Γ).

We now define the foot of a pair of pants. Let Π ∈ Π be an immersed

pants and f : Π0 → Π the corresponding local isometry. Let C∗ denote an

oriented cuff of Π0 and γ = f(C∗). Let C1 and C2 denote the other two cuffs of

Π0, and let p′1, p
′
2 ∈ C∗ denote the two points that are the feet of the shortest

geodesic segments in Π0 that connect C and C1, and C and C2, respectively.

Let v′1 denote the unit vector at p′1 that is orthogonal to C and points to-

wards the interior of Π0. We define v′2 similarly. Set (p1, v1) = f∗(p
′
1, v
′
1) and

(p2, v2) = f∗(p
′
2, v
′
2). Then (p1, v1) and (p2, v2) are in the same component

of N1(γ), and the points p1 and p2 separate γ into two intervals of length

hl(γ). Therefore, the vectors (p1, v1) and (p2, v2) represent the same point

(p, v) ∈ N1(
√

Γ), and we set

foot(Π, γ) = (p, v) ∈ N1(
√
γ).

We call the vector (p, v) the foot of the immersed pair of pants Π at the cuff γ.

This defines the map
foot : Π∗ → N1(

√
Γ).

2.4. Measures on pants and the ∂̂ operator. By M(Π) we denote the

space of real valued Borel measures with finite support on the set of immersed

pants Π, and likewise, by M(N1(
√

Γ)) we denote the space of real valued

Borel measures with compact support on the manifold N1(
√

Γ). (A measure

from M+(N1(
√

Γ)) has a compact support if and only if its support is con-

tained in at most finitely many bundles N1(
√
γ) ⊂ N1(

√
Γ).) ByM+(Π) and

M+(N1(
√

Γ)), we denote the corresponding spaces of positive measures.

We define the operator

∂̂ :M(Π)→M(N1(
√

Γ))

as follows. The set Π is a countable set, so every measure from µ ∈ M(Π) is

determined by its value µ(Π) on every Π ∈ Π. Let Π ∈ Π, and let γi ∈ Γ, i =

0, 1, 2, denote the corresponding oriented geodesics so that (Π, γi) ∈ Π∗. Let

αΠ
i ∈M(N1(

√
Γ)) be the atomic measure supported at the point foot(Π, γi) ∈

N1(
√
γi), where the mass of the atom is equal to 1. Let

αΠ =
2∑
i=0

αΠ
i ,
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and define

∂̂µ =
∑

Π∈Π

µ(Π)αΠ.

We call this the ∂̂ operator on measures. If µ ∈M+(Π), then

∂̂µ ∈M+(N1(
√

Γ)),

and the total measure of ∂̂µ is three times the total measure of µ.

We recall the notion of equivalent measures from Section 3 in [4]. Let

(X, d) be a metric space. By M+(X) we denote the space of positive, Borel

measures on X with compact support. For A ⊂ X and δ > 0, let

Nδ(A) = {x ∈ X : there exists a ∈ A such that d(x, a) ≤ δ},

be the δ-neighbourhood of A.

Definition 2.1. Let µ, ν ∈ M+(X) be two measures such that µ(X) =

ν(X), and let δ > 0. Suppose that for every Borel set A ⊂ X we have

µ(A) ≤ ν(Nδ(A)). Then we say that µ and ν are δ-equivalent measures.

Remark. We observe that this definition is symmetric because ν(A) ≤
µ(Nδ(A)) whenever µ(X \Nδ(A)) ≤ ν(Nδ(X \Nδ(A)).

In our applications X will be either a 1-torus (a circle) or R. In this case,

µ(A) ≤ ν(Nδ(A)) for all Borel sets A if it holds for all intervals A. We recall

that if µ and ν are discrete and integer valued measures that are ε-equivalent,

then there is a “matching” between µ and ν that matches each point x to

a point within ε of x. In other words, letting En be {1, 2, . . . , n} with the

counting measure, if µ = f∗En and ν = g∗En and µ and ν are ε-equivalent,

then we can find σ : En → En such that d(f(k), g(σ(k))) ≤ ε for each k ∈ En.

This holds when µ and ν are measures on any metric space (by the Hall’s

Marriage Theorem) and is even more elementary when the metric space is a

1-torus (i.e., a circle) or an interval.

We observe that if µ and ν are ε1-equivalent and ν and ρ are ε2-equivalent,

then µ and ρ are (ε1 + ε2)-equivalent.

Let γ ∈ Γ and α ∈M(N1(
√
γ)). The bundle N1(

√
γ) has the two compo-

nents N1
+(
√
γ) and N1

−(
√
γ) (the right-hand and left-hand side components),

each isometric to the circle of length hl(γ). The restrictions of α to N1
+(
√
γ)

and N1
−(
√
γ) are denoted by α+ and α− respectively. In particular, by ∂̂+µ

and ∂̂−µ we denote the decomposition of the measure ∂̂µ.

Definition 2.2. Fix γ ∈ Γ, and let α, β ∈ M+(N1(
√
γ)). We say that α

and β are δ-equivalent if the pairs of measures α+ and β+, and α− and β−, are

respectively δ-equivalent. Also, by λ(γ) ∈ M+(N1(
√
γ)), we denote the mea-

sure whose components λ+(γ) and λ−(γ) are the standard Lebesgue measures
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on the metric spaces N1(
√
γ)+ and N1(

√
γ)−, respectively. In particular, the

measure λ(γ) is invariant under the full group of isometries of N1(
√
γ).

Let ε,R > 0. By Γε,R ⊂ Γ we denote the closed geodesics in the Riemann

surface S whose half-length is in the interval [R−ε,R+ε]. We define Πε,R ⊂ Π,

as the set of immersed pants whose cuffs are in Γε,R. We will often call Γε,R the

set of “good curves” and Πε,R the set of “good pants.” Our aim is to prove the

following theorem, which in turn yields the proof of Theorem 2.2 stated above.

We adopt the following convention. In the rest of the paper by P (R) we

denote a polynomial in R whose degree and coefficients depend only on the

choice of ε and the surface S.

Theorem 2.3. Let ε > 0. There exists q > 0 (depending only on the

surface S and ε) so that for every R > 0 large enough, there exists a measure

µ ∈ M+(Πε,R) with the following properties. Let γ ∈ Γε,R, and let ∂̂µ(γ)

denote the restriction of ∂̂µ to N1(
√
γ). If ∂̂µ(γ) is not the zero measure, then

there exists a constant Kγ > 0 such that the measures ∂̂µ(γ) and Kγλ(γ) are

P (R)e−qR-equivalent.

Remark. We say that α ∈ M(N1(
√
γ)) is δ symmetric (for δ > 0) if for

every isometry ι : N1(
√
γ) → N1(

√
γ), the measures α and ι∗α are δ-equi-

valent. If α and Kγλ(γ) are δ-equivalent, then α is 2δ symmetric because λ(γ)

is 0 symmetric.

The proof of Theorem 2.2 follows from Theorem 2.3 in the same way as

it was done in Section 3 in [4]. The brief outline is as follows. We may assume

that the measure µ from the above theorem has integer coefficients. Then we

may think of µ as a formal sum of immersed pants such that the restriction of

the measure ∂̂µ on any N1(
√
γ) is P (R)e−qR-equivalent with some multiple of

the Lebesgue measure (unless the restriction is the zero measure). Considering

µ as the multiset (formally one may use the notion of a labelled collection of

immersed pants) we can then define a pairing between marked immersed pants,

such that two marked pants (Π1, γ1) and (Π2, γ2) are paired if γ1 = −γ2, and

the corresponding twist parameter between these two pairs is P (R)e−pR close

to +1 for some universal constant p > 0. After gluing all the marked pants we

have paired, we obtain the finite cover from Theorem 2.2.

3. Equidistribution and self-correction

In this section we introduce the Equidistribution Theorem (Theorem 3.1)

and the Correction Theorem (Theorem 3.4) and we use them to prove Theo-

rem 2.3. Theorem 3.1 follows from our previous work [4] and provides us with

an evenly distributed collection of good pants. The Correction Theorem allows

us to correct the slight imbalance (as described in the introduction) that may

be found in the original collection of pants.
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3.1. Generating essential immersed pants in S. Let us first describe how

we generate a pair of pants from a Θ-graph. Let Π denote a pair of pants

whose three cuffs have the same length, and let ω : Π→ Π denote the standard

(orientation preserving) isometry of order three that permutes the cuffs of Π.

Let a and b be the fixed points of ω. Let γ0 ⊂ Π denote a simple oriented

geodesic arc that starts at a and terminates at b. Set ωi(γ0) = γi. The union

of two different arcs γi and γj is a closed curve in Π homotopic to a cuff. One

can think of the union of these three segments as the spine of Π. Moreover,

there is an obvious projection from Π to the spine γ = γ0 ∪ γ1 ∪ γ2, and this

projection is a homotopy equivalence.

Let p and q be two (not necessarily) distinct points in S, and let α0, α1,

and α2 denote three distinct oriented geodesic arcs, each starting at p and

terminating at q. We let α = α0 ∪α1 ∪α2. (We call α a Θ-graph.) Let i(αj) ∈
T 1
pS and t(αj) ∈ T 1

q S denote the initial and terminal unit tangent vectors to αj
at p and q respectively. Suppose that the triples of vectors (i(α0), i(α1), i(α2))

and (t(α0), t(α1), t(α2)) have opposite cyclic orders on the unit circle.

We define the map f : Π → S by first projecting the pants Π onto its

spine γ and then by mapping γj onto αj by a map that is a local (orientation

preserving) homeomorphism. Then the induced conjugacy class of maps f∗ :

π1(Π)→ π1(S) is injective.

Moreover, we can homotop the map f to an immersion g : Π → S as

follows. We can write the pants Π as a (nondisjoint) union of three strips

G0, G1, G2, where each Gi is a fattening of the geodesic arc γi. Then we define

a map gi : Gi → S to be a local homeomorphism on each Gi by extending the

restriction of the map f on γi. The condition on the cyclic order of the αi’s at

the two vertices enables us to define gi and gj on Gi and Gj respectively, so

that gi = gj on Gi ∩Gj . Then we set g = gi.

We say that g : Π → S is the essential immersed pair of pants generated

by the three geodesic segments α0, α1 and α2.

Often we will be given two geodesic segments, say α0 and α1, and then

find a third geodesic segment α2 so as to obtain an essential immersed pair of

pants. We then say that α2 is a third connection. In this paper we will often

be given a closed geodesic C on a Riemann surface S, with two marked points

p, q ∈ C. Then every geodesic arc α between p and q that meets p and q at the

same sides of C will be called a third connection, since then C and α generate

an immersed pair of pants as described above. In particular, this represents

an efficient way of generating pants that contain a given closed geodesic C as

its cuff.

3.2. Preliminary lemmas. Let T 1H2 denote the unit tangent bundle. El-

ements of T 1(H2) are pairs (p, u), where p ∈ H2 and u ∈ T 1
pH2. Sometimes we

write u = (p, u) and refer to u as a unit vector in T 1
pH2. By T 1S we denote
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the unit tangent bundle over S. For u, v ∈ T 1
pH2, we let Θ(u, v) denote the

unoriented angle between u and v. The function Θ takes values in the interval

[0, π].

For L, ε > 0, and (p, u), (q, v) ∈ T 1S, we let Connε,L((p, u), (q, v)) be the

set of unit speed geodesic segments γ : [0, l]→ S such that

• γ(0) = p and γ(l) = q;

• |l − L| < ε;

• Θ(u, γ′(0)),Θ(v, γ′(l)) < ε.

The next lemma will be referred to as the Connection Lemma. It provides

a good lower bound on the size of the connection set we have just defined. This

lemma also follows from discussion in the appendix.

Lemma 3.1. Given ε > 0, we can find L0 = L0(S, ε) such that for any

L > L0, and any two vectors (p, u) and (q, v), the set Connε,L
Ä
(p, u), (q, v)

ä
is

nonempty and ∣∣∣Connε,L
Ä
(p, u), (q, v)

ä∣∣∣ ≥ eL−L0 .

Proof. By dis we denote a distance function on T 1S. (We define dis ex-

plicitly later in the paper.) The unit tangent bundle T 1S is naturally identified

with G\PSL(2,R), where G is a lattice. Then we can find a neighbourhood U

of the identity in PSL(2,R) so that if (q, v) ∈ T 1S = G\PSL(2,R) and ξ ∈ U ,

then dis((q, v), (q, v) · ξ) < ε
16 .

We let ψ : U → [0,∞) be a C∞ function with compact support in U , with∫
U ψ = 1. For any (q, v) ∈ T 1S, we let NU (q, v) = {(q, v) · s : s ∈ U}, and

we let ψ(q,v)((q, v) · s) = ψ(s) on NU (q, v). (If ε is small, then s 7→ (q, v) · s is

injective.) The Ck norm of ψ(q,v) is independent of (q, v).

Let gt : T 1S→ T 1S be the geodesic flow. By uniform mixing for uniformly

C∞ functions on S,

(1)

∫
T 1S

ψ(q,v)(gt(x,w))ψ(p,u)(x,w) d(x,w)→ 1,

uniformly in (p, u) and (q, v), as t→∞. (We always assume that the Liouville

measure is normalized so that the total measure of the tangent bundle is

one.) If ψ(q,v)(gt(x,w))ψ(p,u)(x,w) > 0, then (x,w) ∈ NU (p, u) and gt(x,w) ∈
NU (q, v).

The segment g[0,t](x,w) is ε-nearly homotopic (see the definition after this

proof) to a unique geodesic segment α connecting p and q. The reader can

verify that α ∈ Connε,t((p, u), (q, v)). We let Eα,t ⊂ NU (p, u) be the set of

(x,w) for which gt(x,w) ∈ NU (q, v), and g[0,t](x,w) is ε-homotopic to α. Then
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by (1), ∑
α

∫
Eα,t

ψ(q,v)(gt(x,w))ψ(p,u)(x,w) d(x,w) = 1 + o(1).

On the other hand, we can easily verify that V (Eα,t) ≤ K(ψ)e−t. (Here

V (Eα,t) is the volume of Eα,t.) Hence∫
Eα,t

ψ(q,v)(gt(x,w))ψ(p,u)(x,w) d(x,w) ≤
∫

Eα,t

(sup
U
ψ)2 d(x,w)

≤ K(ψ)e−t.

So the number of good α is at least K(ψ)et, as long as t is large given S

and ε. �

Definition 3.1. Let E ≥ 0. We say that two paths A and B in H2 are

E-nearly homotopic if the distance between the endpoints of A and B is at

most E. Two paths on the closed surface S are E-nearly homotopic if they

have lifts to H2 that are E-nearly homotopic.

The following lemma gives the estimate for the number of good pants that

are bounded by a given (good) cuff.

Lemma 3.2. Let 0 < ε < 1. We let γ ∈ Γε,R and let Πε,R(γ) denote the

set of pants in Πε,R that contain γ as a cuff. Then

|Πε,R(γ)| � ReR,

where the constant for � depends only on S and ε.

Proof. For the upper bound, let Fγ denote a set of d2Re evenly distributed

points on γ. If Π ∈ Πε,R and if γ ∈ ∂Π, we let α be the geodesic segment in

Π that is orthogonal to γ at its endpoints and simple on Π. Then we let α′

be a geodesic segment connecting two points of Fγ , such that α′ is 1
2 -nearly

homotopic to α, and hence l(α′) ≤ l(α) + 1. It can easily be verified that the

length of α is at most R+ 9, thus the length of α′ is at most R+ 10.

We leave it to the reader to verify that the number of geodesic segments

of length at most L that connect two given points on the closed surface S is

at most eR+diam(S)/Area(S).

If two pants produce identical α′, then the two pants are the same. Be-

tween any two points of Fγ there are at most NeR such arcs α′ (the constant

N depends only on S), and the endpoints of α′ are R ± 1 apart, so the total

number of such arcs is at most 10NReR.

For the lower bound: By Lemma 3.1 we can find N(S, ε)eR geodesic seg-

ments α̂ connecting two given diametrically opposite points of γ, of length

within ε
100 of R+ log 4, and such that the angle between α̂ and γ is within ε

100
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of π
2 . Here we assume that the two vectors (at the two diametrically opposite

points) at γ that are tangent to α̂ are on the same side of γ. Then to any

such α̂ there is an ε
10 -nearly homotopic α with endpoints on γ (homotopic on

S through arcs with endpoints on γ) and such that α is orthogonal to γ. Each

such α produces a pair of pants Π ∈ Πε,R that contains γ as a cuff.

Different α’s give different pants. Two α̂ with the same α must have

nearby endpoints along γ and be 10ε-nearly homotopic. So we get at least

2RN(S, ε)

10ε
eR

of the α’s and hence of the pants. �

Remark. Let M > 1, and let Xγ(M) denote the number of pants in

Πε,R(γ) whose two other cuffs are in Γ ε
M
,R. Then Xγ(M) � ReR. The upper

bound follows from the upper bound of the lemma. If the segment α̂ is of

length within ε
100M of 2R − hl(γ) + log 4 and if the angle between α̂ and γ

is within ε
100 of π

2 , then the induced pants have the desired property that the

other two cuffs are in Γ ε
M
,R. On the other hand, it follows from the Connection

Lemma that the number of such α̂’s is � to N(S, ε,M)eR for some constant

N(S, ε,M).

3.3. The Equidistribution Theorem. The following is the Equidistribution

Theorem. This is a stronger equidistribution result than the one proved in our

previous paper [4].

Theorem 3.1. Let ε > 0. Let µ be the measure on Πε,R that assigns to

each pants in Πε,R the value 1. Then for R large enough, the measure µ has

the following properties :

(i) µ(Πε,R) � e3R;

(ii) for every γ ∈ Γε,R, the measure ∂̂±µ(γ) is Ce−qR equivalent to K±γ λ±(γ)

or some constants K+
γ and K−γ that satisfy the inequality∣∣∣∣∣K+

γ

K−γ
− 1

∣∣∣∣∣ < Ce−qR,

where C, q > 0 depend only on S and ε;

(iii) moreover, K±γ � ReR for γ ∈ Γε,R.

Proof. The well-known result of Margulis [5] asserts that∣∣∣Γε,R∣∣∣ � e2R

R
.

Claim (i) of the theorem follows from this estimate and Theorem 3.2. Claim (iii)

follows from claim (ii) and Lemma 3.2. Thus, it remains to prove (ii). To

prove (ii) we need be able to estimate the number of good pants that bound

gamma and whose feet belong to a given interval of γ. Moreover, we need to

show that the number of such pants that are to the left of γ is very close to
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the number of such pants that are to the right of γ. We first explain how to

effectively estimate the two numbers.

Let η1 and η2 be two geodesic arcs on S that connect the same two points

on S. Denote by [· η1 ·η2· ] the corresponding closed broken geodesic on S. (See

the second paragraph of Section 4.1 for more on this notation.) We assume

that η1 and η2 meet at the right angles and that we can orient [· η1 · η2· ] so

that both right turns are “to the right” or both right turns are “to the left.”

Let γ be the closed geodesic freely homotopic to [· η1 · η2· ]. Then we can

write

l(γ) = h(l(η1), l(η2))

for some smooth symmetric function h (where l denotes the length function),

for which

h(e1, e2) = e1 + e2 − log 2 +O(e−min(e1,e2)/2).

(The function h can be computed explicitly from the basic formulas in hyper-

bolic geometry.)

Suppose that γ is a (good) closed geodesic on S, and suppose that η is

a “third connection” for γ. So η is a geodesic segment that meets γ at two

points x and y, and is orthogonal to γ at x and y, and lies on the same side

of γ at both points: the two normal vectors to γ pointing into η at x and y

are on the same component of N1(γ). Then there is a unique pair of pants Π

for which γ ∈ ∂Π and for which η is an orthogeodesic on Π that lifts to be

embedded in Π. Letting σ1 and σ2 be the two segments of γ \ {x, y}, we find

that the two other cuffs γ1, γ2 of Π are freely homotopic to [·σi · η±1· ]. So we

have

l(γi) = h(l(η), l(σi)),

where h is defined as above. Moreover, the two feet of Π on γ lie at the two

midpoints of x and y on γ. (Really, we should think of x and y as lying on the

parametrizing 1-torus for γ, and likewise the feet, but we will say that they

are on γ, by a mild abuse of notation.)

Suppose that I ⊂ N1(
√
γ) is an interval. So I comprises a choice of

component of N1(γ)—a side of γ—along with a pair of intervals in γ, of equal

length and placed halfway along γ from each other. We should think of γ as

long, say longer than 10, and I as short, say shorter than 1/10.

We define the region

R(γ, I) ⊂ γ × γ × R+

as the set of (x, y, l) for which

h(l, si) ∈ [2R− 2ε, 2R+ 2ε]

and for which the two midpoints of x and y lie in the two intervals on γ

associated to I. Here s1, s2 are the lengths of the two arcs in γ between x
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and y. Then suppose η is a third connection for γ and that η lies on the

same side of γ as I does. Let x and y be the endpoints of η, and let Πη be

the associated pair of pants for η (and γ). Then (x, y, l(η)) ∈ R(γ, I) if and

only if Πη is a good pair of pants, and the pair of feet of Πη on N1(
√
γ) lies

in I. Thus, the number of good pants whose feet belong to the interval I is

equal to the number of third connections η (on a given side of γ) for which the

associated triple (x, y, l(η)) lies in R(γ, I). So our goal is simply to count the

number of third connections η (on a given side of γ) for which the associated

triple (x, y, l(η)) lies in R(γ, I).

One can see that the volume of R(γ, I) is on the order of ε2|I| as follows.

For any choice of a point in I, x and y are determined by s0, and possible

pairs (l, s0) lie in a diamond of size about ε. Since the area of the diamond is

about ε2, it follows that the volume of R(γ, I) is about ε2|I|.
If we denote by Cγ the set of associated triples (x, y, l(η)) for all third

connections η, our goal is simply to count Cγ∩R(γ, I). The following counting

formula is the main ingredient we need to finish the proof.

Let A and B be two oriented geodesic segments on S of lengths a > 0 and

b > 0 respectively, and let 0 < L0 < L1. Define

ConnA,B(L0, L1)

to be the set of geodesic connections between A and B. That is,

η ∈ ConnA,B(L0, L1)

if η is a geodesic segment on S of length at least L0 and at most L1 such that η

connects the right side of A and the left side of B and is orthogonal to the arcs

A and B. (η is an orthogeodesic connecting the appropriate sides of A and B.)

The following theorem is stated and proved in the appendix as Theorem 11.3.

Theorem 3.2. There exist constants C = C(S), q = q(S) > 0 with the

following properties. Let δ = e−qL, and suppose a = b = δ2. Then

#ConnA,B(L,L+ δ2) =
1

8π2χ(S)
δ6eL

Ä
1 +O(δ)

ä
.

This type of counting result appears often in literature (for example, see

[3] [6]), and it goes back to Margulis [5].

Now let Q be any cube of the form J1 × J2 × [L0, L1] ⊂ γ × γ ×R+, with

|J1| = |J2| = L1 − L0 = δ2 (and suppose L0, L1 are about R that is large).

Then Theorem 3.2 implies

#(Q ∩ Cγ) = ESδ
6eL
Ä
1 +O(δ)

ä
= (1 +O(δ))

∫
Q
ESe

L dx dy dL,
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where

ES =
1

8π8|χ(S)|
.

It follows that for any region R ⊂ γ × γ × [R − 1, R + 1] tiled by such

cubes,

#(R∩ Cγ) =
Ä
1 +O(δ)

ä ∫
R
ESe

L dx dy dL

and, more generally, for any region R ⊂ γ × γ × [R− 1, R+ 1],

#(R∩ Cγ) =
Ä
1 +O(δ)

äÇ∫
R
ESe

L dx dy dL±
∫
N3δ2 (∂R

ESe
L dx dy dL

å
,

where N3δ2(∂R) is the neighbourhood of ∂R. (Here A ± B means a number

in [A−B,A+B].)

Now let R = R(γ, I) and assume that ε ≥ |I| > δ. Then

Vol
Ä
N3δ2(R)

ä
≈ ε2δ2 = O

Ä
δVol(R)

ä
.

Therefore,

#(R∩ Cγ) =
Ä
1 +O(δ)

ä ∫
R
ESe

L dx dy dL ≈ eRε2|I|.

On the other hand,∫
R(γ,I)

ESe
L dx dy dL = Kγ |I|

for some Kγ > 0 because the integral clearly depends only on |I| and∫
R(γ,I)

· =
∫
R(γ,I1)

· +

∫
R(γ,I2)

· ,

where I1, I2 is a partition of I.

Therefore,

#(R(γ, I) ∩ Cγ) = Kγ |I|
Ä
1 +O(δ)

ä
for every interval I of length at least δ, and claim (ii) of the theorem follows. �

3.4. The Good Correction Theorem. To prove Theorem 2.3 we need to

produce a measure µ on good pants such that for each good geodesic γ, ∂̂µ(γ)

is P (R)e−qR-equivalent to some Kγλ(γ), where λ is the Lebesgue measure on

N1(γ). In particular, ∂̂µ(γ) must have the same total measure on both sides

of γ. In other words, there must be the same number of pants on both sides

of γ. We can write this as ∂µ(γ) = 0.

Now let us construct the measure µ0 on good pants as the counting

measure on the good pair of pants. Theorem 3.1 says that ∂̂µ(γ) is Ce−qR-

equivalent to K±λ±(γ), with∣∣∣∣∣K+
γ

K−γ
− 1

∣∣∣∣∣ < Ce−qR.
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So we have the desired equidistribution on each side of γ, and we have a small

discrepancy between the number of pants on the two sides of γ. What we want

to do is to make a small change in the number of each pair of good pants in

order to correct the discrepancy. So we want to replace µ0 with µ0 +X where

∂X = −∂µ0 and X is small compared to µ0.

To do this we consider the more general problem of finding X such that

(2) ∂X = α,

and we ask two questions:

1. For which α can we solve (2)?

2. What bound can we get on the size of X given a suitable bound on the

size of α?

It turns out that we can get fairly sharp answers for both questions. First,

if ∂X = α, then α ≡ 0 in H1(S); we will prove that we can always solve

∂X = α when α is zero in singular homology. Second, if γ is a single good

closed geodesic and ∂X = γ, then

|X|({Π : γ ∈ ∂̃Π} ≥ 1,

and therefore

||X||∞ ≥
1

ReR
.

We prove that we can solve ∂X = α such that

||X||∞ ≤ P (R)e−R||α||∞

for some polynomial P (R) depending on S and ε. These two results are stated

essentially as Theorems 3.4 and 3.5. The proof of these theorems will be the

object of the remainder of this paper.

Having proven these theorems, we can correct the discrepancy and prove

Theorem 2.3.

We let µ1 = µ0 +X, where ∂X = −∂µ0, and

||X||∞ ≤ P (R)e−R||∂µ0||∞
≤ P (R)e−Re(1−q(S))R

� 1.

Then µ1 is a positive sum of good pants, has the same number of pants of both

sides of every closed geodesic, and has the same equidistribution property as

µ0 because it is a small perturbation. Therefore, it satisfies the conclusions of

Theorem 2.3, and we can use it to build a good cover.

Recall that if A is an Abelian group and X any set, then AX is the group

of A-weighted finite formal sums of elements from X.
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Definition 3.2. Let s0, s1 ∈ RΓε,R, and let M ≥ 1. We say that s0 = s1 in

ΠMε,R homology if there exists W ∈ RΠMε,R such that ∂W = s1 − s0.

The following theorem summarizes the main idea of this paper. It implies

that every sum of good curves that is zero in the standard homology is the

boundary of a sum of good pants. That is, if s0, s1 ∈ RΓε,R and s0 = s1 in the

standard homology on the surface S, then s0 = s1 in Π300ε,R homology. By

H1(S) we denote the first homology on S with rational coefficients.

Theorem 3.3. Let ε > 0. There exists R0 = R0(S, ε) > 0 such that for

every R > R0, the following holds. There exists a set H = {h1, . . . , h2g} ⊂
QΓε,R that form a basis of H1(S), such that for every γ ∈ Γε,R, there are

ai ∈ Z so that

γ =
2g∑
i=1

aihi

in Π300ε,R homology.

Remark. Observe that if γ = 0 in H1(S), then γ = 0 Π300ε,R homology.

The proof of this theorem occupies the primary text of Sections 4–9. But

to prove the Ehrenpreis Conjecture we require the following stronger result.

Theorem 3.4. Let ε > 0. There exists R0 > 0 (which depend only on

S and ε) such that for every R > R0, there exists a set H = {h1, . . . , h2g} ⊂
QΓε,R and a map φ : Γε,R → QΠ300ε,R such that

(i) h1, . . . , h2g is a basis for H1(S);

(ii) ∂(φ(γ))− γ ∈ ZH ;

(iii)
∑
γ∈Γε,R |φ(γ)(Π)| < P (R)e−R for every Π ∈ Π300ε,R, where the polynomial

P (R) depends only on S and ε.

Remark. Note that the map φ depends on ε and R, so sometimes we write

φ = φε,R.

Remark. An inequality of the form∑
γ∈Γε,R

|q(γ)(Π)| ≤ A

is equivalent to saying

||q(α)||∞ ≤ A||α||∞
for all α ∈ QΓε,R.

Remark. Observe that (i) and (ii) imply that ∂̃φ∂̃ = ∂̃.

The existence of the function φ that satisfies conditions (i) and (ii) follows

from Theorem 3.3. Condition (iii) will be proved using our randomization
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theory (see Appendix 1). As we go along, after every relevant homological

statement we make randomization remarks. Theorem 3.4 then follows from

these randomization remarks, as we explain at the end of Section 9.

Remark. Estimate (iii) in the statement of the theorem can be reformu-

lated as follows. Consider the standard measures σΓ on Γε,R and σΠ on Π300ε,R.

Then the map φ is P (R)-semirandom with respect to σΓ and σΠ. See the ap-

pendix for definitions of the standard measures and the notion of semirandom

maps.

The image of φ lies in Π300ε,R, and we want it to lie in Πε,R, so we require

the following: Let M > 1. The following lemma states that any curve γ ∈ Γε,R
is homologous to some s ∈ RΓ ε

M
,R in Πε,R homology.

Lemma 3.3. Let ε,M > 0. Then there exists R0 > 0 such that for every

R > R0, we can find a map qM = q : Γε,R → Q+Πε,R such that

(i) for every γ ∈ Γε,R, q(γ) is a positive sum of pants, all of which have γ as

one boundary cuff (with the appropriate orientation), and two other cuffs

in Γ ε
M
,R, and γ − ∂q(γ) ∈ QΓ ε

M
,R;

(ii) for every Π ∈ Πε,R, we have∑
γ∈Γε,R

|q(γ)(Π)| ≤ K

R
e−R

for some constant K ≡ K(S, ε,M) > 0, where q(γ)(Π) ∈ Q+ is the coeffi-

cient of Π in q(γ).

Proof. It follows from the remark after Lemma 3.2 that the number of

pants that have γ as one boundary cuff and two other cuffs in Γε, R
M

is of the

order ReR. Let q(γ) be the average of these pants. (The average of a finite set

S is the formal sum of elements from S where each element in the sum has the

weight 1
|S| .) The inequality in condition (ii) follows from the fact that for any

Π ∈ Π1,R, the sum ∑
γ∈Γε,R

|q(γ)(Π)|,

has at most three nonzero terms. �

We can now state the following improved version of Theorem 3.4. This

new theorem is exactly the same as the previous one except that the new

function φ, which is denoted by φnew, maps Γε,R to QΠε,R whereas the old φ

maps Γε,R to QΠ300ε,R.

Theorem 3.5. Let ε > 0. There exists R0 > 0 (which depend only on S

and ε) such that for every R > R0, there exist a set H = {h1, . . . , h2g} ⊂ QΓε,R
and a map φnew : Γε,R → QΠε,R such that
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(i) h1, . . . , h2g is a basis for H1(S);

(ii) ∂(φnew(γ))− γ ∈ ZH ;

(iii)
∑
γ∈Γε,R |φnew(γ)(Π)| < P (R)e−R, where the polynomial P (R) depends

only on S and ε.

Proof. We extend the function φ to RΓε,R by linearity. For γ∈Γε,R, we let

φnew(γ) = φ(γ − ∂q(γ)) + q(γ),

where φ is from the previous theorem and q = q300 is the improvement function

from Lemma 3.3. Then since H is a generating set for H1(S), it follows that

∂(φnew(γ)) = ∂(φ(γ)), and thus we obtain ∂(φnew(γ)) − γ ∈ ZH. It remains

to verify inequality (iii) of the theorem.

For each Π ∈ Πε,R, we have

(3)
∑
γ

∣∣∣φnew(γ)(Π)
∣∣∣ ≤∑

γ

∣∣∣q(γ)(Π)
∣∣∣+∑

γ

∣∣∣φ(γ − ∂q(γ))(Π)
∣∣∣.

On the other hand, for each η ∈ Γε,R, we have the inequality∑
γ

∣∣∣∂q(γ)(η)
∣∣∣ ≤ C1

for some universal constant C1 > 0. In other words, the total weight of η in

the formal sum of curves ∑
γ

∂q(γ) ∈ QΓε,R

is at most C1. This follows from the last inequality of Lemmas 3.3 and 3.2.

Thus, we have∑
γ

∣∣∣φ(γ − ∂q(γ))(Π)
∣∣∣ ≤∑

γ

∣∣∣φ(γ)(Π)
∣∣∣+ C1

∑
γ

∣∣∣φ(γ)(Π)
∣∣∣.

We replace this inequality in (3), and the theorem follows. �

Of course φnew extends linearly to QΓε,R. We observe that if γ is zero

in H1(S), then ∂φnew(γ) is equal to γ because ∂(φnew(γ)) − γ ∈ ZH and

∂(φnew(γ)) differs from γ by a boundary. In particular, for any µ ∈ QΠε,R,

the equality

∂φnew∂µ = ∂µ

holds.

3.5. A proof of Theorem 2.3. First we state and prove the following lemma

about equivalent measures on the circle R/2RZ, where R > 0 is a parameter.

Recall that λ denotes the Lebesgue measure on the circle R/2RZ.

Lemma 3.4. If α is δ-equivalent to Kλ on R/2RZ, for some K > 0, and

β is a measure on R/2RZ, then α+ β is ( |β|2K + δ)-equivalent to (K + |β|
2R)λ on

R/2RZ.
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Proof. Recall the definition of δ-equivalent measures from the previous

section. We need to prove that (α+β)(I) ≤ (K+ |β|2R)|Nδ′(I)|, where δ′ = δ+ |β|2K ,

for any interval I such that δ′ neighbourhood of I is a proper subset of the

circle R/2RZ.

We have

(α+ β)(I)≤K(|I|+ 2δ) + |β|

≤
Ç
K +

|β|
2R

åÇ
|I|+ 2δ +

|β|
K

å
=

Ç
K +

|β|
2R

å ∣∣∣Nδ′(I)
∣∣∣. �

We give the following definitions. To any measure α ∈ M(N1(
√
γ)) we

associate the number |α|(γ) = |α+(γ)|+ |α−(γ)|.
We proceed with the proof of Theorem 2.3. Let µ be the measure on Πε,R

from Theorem 3.1. Define the measure µ1 on Πε,R by letting µ1 = µ− φ(∂µ),

where φ = φnew is from Theorem 3.5. We show that µ1 is the measure that

satisfies the conclusions of Theorem 2.3.

As observed before, ∂µ1 = 0. It remains to show that ∂̂µ1(γ) is P (R)e−qR-

equivalent to some multiple of the Lebesgue measure on N1(
√
γ). Recall from

Theorem 3.1 that the measure ∂̂±µ(γ) is Ce−qR equivalent to K±γ λ±(γ) for

some constants K+
γ and K−γ that satisfy the inequality

(4)

∣∣∣∣∣K+
γ

K−γ
− 1

∣∣∣∣∣ < Ce−qR,

and recall that K±γ � ReR. Then for all γ, from (4) we get∣∣∣∂µ(γ)
∣∣∣ ≤ CRe(1−q)R,

which together with Theorem 3.5 yields the inequality

|φ(∂µ)|(Π) ≤ P (R)e−qR

for each pair of pants Π, and we obtain

|∂̂φ(∂µ)|(γ) ≤ P (R)e(1−q)R

for all γ. Since K±γ � ReR, we conclude from Lemma 3.4 that ∂̂µ1(γ) is

P (R)e−qR-equivalent to some multiple of the Lebesgue measure λ(γ) onN1(
√
γ),

and we are done.

4. The theory of inefficiency

In this section we develop the theory of inefficiency. This theory supports

the geometric side of the correction theory that is used to prove our main

technical result the Good Correction Theorem.
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Before we begin with the estimates of this section, we will provide a brief

overview of the remainder of this paper. Our goal is to prove identities in the

good pants homology, which means that we need to generate a formal sum of

good pants whose boundary is a certain given formal sum of good curves. How

do we generate a pair of good pants?

We generate a pair of good pants by constructing a Θ-graph made out

of geodesic segments; the Connection Lemma insures that we have enough

geodesic segments with the desired properties, and the Theory of Inefficiency

allows us to estimate the length of the cuffs of the associated pair of pants in

terms of the length of the geodesic segments and the angle at which they meet.

In every identity we prove in the good pants homology, we will state our hy-

pothesis in terms of the Theory of Inefficiency, and every time we estimate the

length of a geodesic segment or a closed geodesic, we will use this theory as well.

4.1. The inefficiency of a piecewise geodesic arc. By T 1H2 we denote the

unit tangent bundle of H2. Elements of T 1H2 are pairs (p, u), where p ∈ H2

and u ∈ T 1
pH2. For u, v ∈ T 1

pH2, we let Θ(u, v) denote the unoriented angle

between u and v. Let α : [a, b] → H2 be a unit speed geodesic segment. We

let i(α) = α′(a), and t(α) = α′(b).

Let α1, . . . , αn denote oriented piecewise geodesic arcs on S such that the

terminal point of αi is the initial point of αi+1. By α1α2 . . . αn we denote the

concatenation of the arcs αi. If the initial point of α1 and the terminal point

of αn are the same, by [α1α2 . . . αn] we denote the corresponding closed curve.

We define the inefficiency operator as follows. We first discuss the inef-

ficiency of piecewise geodesic arcs and after that the inefficiency of piecewise

geodesic closed curves.

Definition 4.1. Let α be an arc on a surface. By γ we denote the geodesic

arc with the same endpoints and homotopic to α. We let I(α) = l(α) − l(γ).

We call I(α) the inefficiency of α. (The inefficiency I(α) is equal to 0 if and

only if α is a geodesic arc.)

We observe the monotonicity of inefficiency. Let α, β, γ ⊂ H2 be three

piecewise geodesic arcs in H2 such that αβγ is a well-defined piecewise geodesic

arc. Then I(αβγ) ≥ I(β). This is seen as follows. Let η be the geodesic arc

with the same endpoints as αβγ, and let β′ be the geodesic arc with the same

endpoints as β. Then

I(αβγ) = l(αβγ)− l(η)

≥ l(αβγ)− l(αβ′γ)

= l(β)− l(β′)

= I(β).
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We also define the inefficiency function of an angle θ ∈ [0, π] as follows.

Let α∞ and β∞ be two geodesic rays in H2 that have the same initial point,

such that θ is the exterior angle between α∞ and β∞. (Then θ is also the

bending angle of the piecewise geodesic α−1
∞ β∞.) We want to define I(θ) as

the inefficiency of α−1
∞ β∞, but since the piecewise geodesic α−1

∞ β∞ is infinite

in length, we need to prove that such a definition is valid.

Consider a geodesic triangle in H2 with sides A,B and C, and let θ > 0 be

the exterior angle opposite to C. (We also let l(A) = A, l(B) = B, l(C) = C.)

Then

coshC = coshA coshB + cos θ sinhA sinhB

and, therefore,

coshC

eA+B
=

coshA

eA
coshB

eB
+ cos θ

sinhA

eA
sinhB

eB
.

We conclude that
coshC

eA+B
→ 1

4
(cos θ + 1),

when A,B →∞. Since

coshC

eC
→ 1

2
, C →∞,

we get

eC−A−B →
Å

cos
θ

2

ã2

,

and therefore

A+B − C → 2 log sec
θ

2
.

Let r, s > 0, and let αr be the geodesic subsegment of α∞ (with the same

initial point) of length r. Similarly, βs is a geodesic subsegment of β∞ of

length s. Then we let

I(θ) = I(α−1
∞ β∞) = lim

r,s→∞
I(α−1

r βs).

It follows from the above discussion that this limit exists and

(5) I(θ) = 2 log sec
θ

2
.

4.2. Preliminary lemmas. We have the following lemma.

Lemma 4.1. Let α denote an arc on S, and let γ be the appropriate ge-

odesic arc with the same endpoints as α and homotopic to α. Choose lifts

of α and γ in the universal cover H2 that have the same endpoints, and let

π : α→ γ be the nearest point projection. Let

E(α) = sup
x∈α

d(x, π(x)).

Then

E(α) ≤ I(α)

2
+ log 2.
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L− L+

α+
α−

E

Figure 1. The case where γ is an arc

Proof. Let E > 0. The minimally inefficient arc α (which has the same

endpoints as γ and is homotopic to γ) that is at the distance E from γ is given

in Figure 7. Here γ is divided into two subsegments of length L− and L+. Let

A− = l(α−) and A+ = l(α+). By the monotonicity of inefficiency, and using

the inefficiency for angles, we have

E + L− −A− < I

Å
π

2

ã
and

E + L+ −A+ < I

Å
π

2

ã
.

Summing up yields

E <
I(α)

2
+ I

Å
π

2

ã
=
I(α)

2
+ log 2,

since by (5), we have I(π2 ) = log 2. �

The following is the New Angle Lemma.

Lemma 4.2 (New Angle Lemma). Let δ,∆ > 0, and let αβ ⊂ H2 be a

piecewise geodesic arc, where α is piecewise geodesic arc and β is a geodesic

arc. Suppose that γ is the geodesic arc with the same endpoints as αβ. There

exists L = L(δ,∆) > 0 such that if l(β) > L and I(αβ) ≤ ∆, then the

unoriented angle between γ and β is at most δ.

Proof. Denote by θ the angle between γ and β, and let h be the distance

between the other endpoint of β and γ. Then

sinh(h)

sin(θ)
= sinh(l(β)).

The lemma follows from this equation and the fact that h is bounded in terms

of I(αβ) (see Lemma 4.1). �
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We also have

Lemma 4.3. Suppose that αβγ is a concatenation of three geodesic arcs in

H2, and let θαβ and θβγ be the two bending angles. Suppose that θαβ, θβγ <
π
2 .

Then

I(αβγ) ≤ log(sec(θαβ)) + log(sec(θβγ)).

Proof. Let η1 be the geodesic that is orthogonal to β at the point where

α and β meet. Similarly, let η2 be the geodesic that is orthogonal to β at the

point where β and γ meet. Let Aα be the geodesic arc orthogonal to η1 that

starts at the initial point of α, and let Aγ be the geodesic arc orthogonal to η2

that starts at the terminal point of γ.

Let η be the geodesic arc with the same endpoints as αβγ. Then l(η) ≥
l(Aα) + l(β) + l(Aγ).

On the other hand, from the hyperbolic low of sines, we have

sinhAα = sinhα · cos θαβ,

and hence

log sinhα− log sinhAα = log sec θαβ,

which implies

α−Aα ≤ log sec θαβ,

because the derivative of log sinh is greater than one. Thus, we have proved

that l(Aα) > l(α) − log(sec(θαβ)), and similarly l(Aγ) > l(γ) − log(sec(θβγ)).

So

I(αβγ) < l(α) + l(γ)− l(Aα)− l(Aγ)

< log(sec(θαβ)) + log(sec(θβγ)). �

4.3. The Long Segment Lemmas for arcs. We now state and prove several

lemmas called the Long Segment Lemmas. The following is the Long Segment

Lemma for angles.

Lemma 4.4 (Long Segment Lemma). Let δ > 0,∆ > 0. There exists a

constant L = L(δ,∆) > 0 such that if α and β are oriented geodesic arcs such

that I(αβ) ≤ ∆ (assuming that the terminal point of α is the initial point of

β) and l(α), l(β) > L, then I(αβ) < I(Θ(t(α), i(β))) < I(αβ) + δ.

Proof. The left hand-side of the above inequality follows from the mono-

tonicity of inefficiency. For the right-hand side, let α∞ and β∞ denote the

geodesic rays whose initial point is the point where α and β meet and that

contain α and β respectively. (We also assume that α∞ has the same orienta-

tion as α and β∞ the same orientation as β.) Recall that I(α∞β∞) was defined

just above formula (5). Let η be the geodesic arc with the same endpoints as

αβ, and let η1 be the geodesic ray with the same endpoints as α∞β. By θ0 we
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α

β−

γ
θ+

β+

α̂ β̂

η

θ−

Figure 2. The Long Segment Lemma

denote the angle between α and η, by θ1 the angle between η and β, and by

θ2 the angle between η and η1.

We observe that θ0, θ1, and θ2 are small (by the New Angle Lemma), and

therefore

I(α∞β∞) < I(α∞β) + I(θ1 + θ2)

< I(αβ) + I(θ0) + I(θ1 + θ2)

< I(αβ) + o(1),

where o(1)→ 0 as L→∞. �

The following is the Long Segment Lemma for arcs.

Lemma 4.5 (Long Segment Lemma for arcs). Suppose we can write η =

αβγ, where α and γ are piecewise geodesic arcs and β is a geodesic arc of

length l. Then ∣∣∣I(αβ) + I(βγ)− I(αβγ)
∣∣∣→ 0

uniformly when l→∞ and I(αβ) + I(βγ) is bounded above.

Proof. If we replace α and γ by the associated geodesics arcs, then I(αβ)+

I(βγ)− I(αβγ) will be unchanged, and I(αβ) + I(βγ) will be decreased, so we

can assume that α and γ are geodesic arcs. We divide β at its midpoint into

β− and β+, so β = β−β+, and αβγ = αβ−β+γ. We will show the following

estimates (for δ small when l is large and I(αβ) + I(βγ) is bounded above):

(i)
∣∣∣I(αβ−) + I(β+γ)− I(αβγ)

∣∣∣ < δ,

(ii)
∣∣∣I(αβ) + I(αβ−))

∣∣∣ < δ,

(iii)
∣∣∣I(βγ) + I(β+γ))

∣∣∣ < δ.

The lemma then follows from (i), (ii), and (iii).

For (i), we refer to Figure 2. We find that

0 ≤ I(α̂β̂) = I(αβγ)− I(αβ−)− I(β+γ).
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Moreover, when I(αβ−) (which is at most I(αβ)) and I(β+γ) (which is at

most I(βγ)) are bounded above, and l(β−) = l(β+) = l(β)
2 is a large, then θ−

and θ+ are small (by the New Angle Lemma), so I(α̂β̂) ≤ I(θ−+ θ+) is small.

Likewise, I(αβ)− I(αβ−) = I(α̂β+) and 0 ≤ I(α̂β+) ≤ I(θ−). This proves (i)

and (ii), and (iii) is the same as (ii). �

4.4. The inefficiency of a closed piecewise geodesic curve. Let α1, . . . , αn
denote oriented piecewise geodesic arcs on S such that the terminal point of

αi is the initial point of αi+1. By α1α2 . . . αn we denote the concatenation of

the arcs αi. Assume that the initial point of α1 and the terminal point of αn
are the same. By [α1α2 . . . αn] we denote the corresponding closed curve.

We define the inefficiency operator as follows.

Definition 4.2. Let α be a closed curve on a surface. By γ we denote

the appropriate closed geodesic that is freely homotopic to α. We let I(α) =

l(α)− l(γ). We call I(α) the inefficiency of α. (The inefficiency I(α) is equal

to 0 if and only if α is a closed geodesic.)

The following is a closed curve version of Lemma 4.1.

Lemma 4.6. Let α denote a closed curve on S, and let γ be the appro-

priate closed geodesic freely homotopic to α. Choose lifts α̃ and γ̃, of α and

γ respectively, in the universal cover H2 that have the same endpoints. The

nearest point projection π̃ : α̃→ γ̃ descends to the map π : α→ γ. Let

E = E(α) = sup
x∈α̃

d(x, π̃(x)).

Then providing l(α) > L0 for some universal constant L0, we have

E ≤ I(α)

2
+ 1.

Proof. The minimally inefficient closed curve α that is freely homotopic

to γ and the distance E from γ is given in Figure 3. Denote by η the corre-

sponding geodesic segment of length E. Then by the Long Segment Lemma

and monotonicity of inefficiency,

I(ηγη−1) ≤ I(ηγ) + I(γη−1) +
1

7

≤ I
Å
π

2

ã
+ I

Å
π

2

ã
+

1

7

< 2,

providing that l(γ) > L0, where L0 is a universal constant. Hence

l(α)− l(γ) ≥ 2l(η)− 2,

or

E ≤ I(α)

2
+ 1. �
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E

αγ

Figure 3. α is the minimally inefficient curve with l(η) = E

The following is the Long Segment Lemma for closed curves.

Lemma 4.7 (Long Segment Lemma for closed curves). Let α be an piece-

wise geodesic arc and β a geodesic arc on S, such that the initial point of α

is the terminal point of β and the initial point of β is the terminal point of α.

Then

|I([αβ])− I(βαβ)| < δ,

where δ → 0 when l(β)→∞ and I(βαβ) is bounded above.

Proof. The proof is similar to the proof of Lemma 4.5 and is left to reader.

�

4.5. The Sum of Inefficiencies Lemma. The following is the Sum of Inef-

ficiencies Lemma. Let S denote a closed hyperbolic Riemann surface

Lemma 4.8 (Sum of Inefficiencies Lemma). Let ε,∆ > 0 and n ∈ N.

There exists L = L(ε,∆, n) > 0 such that the following holds. Let α1, . . . , αn+1

= α1, β1, . . . , βn be geodesic arcs on the surface S such that α1β1α2β2 . . . αnβn
is a piecewise geodesic closed curve on S. If I(αiβiαi+1) ≤ ∆ and l(αi) ≥ L,

then ∣∣∣∣∣I([α1β1α2β2 . . . αnβn])−
n∑
i=1

I(αiβiαi+1)

∣∣∣∣∣ ≤ ε.
Proof. It directly follows from the Long Segment Lemma for closed curves.

�
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Remark. In particular, we can leave out the β’s in the above lemma and

write ∣∣∣∣∣I([α1α2 . . . αn])−
n∑
i=1

I(αiαi+1)

∣∣∣∣∣ ≤ ε,
providing that I(αiαi+1) ≤ ∆ and l(αi) ≥ L. Moreover, by the Long Segment

Lemma for Angles (for L large enough), we have∣∣∣∣∣I([α1α2 . . . αn])−
n∑
i=1

I(θi)

∣∣∣∣∣ ≤ 2ε,

where θi = Θ(t(αi), i(αi+1)).

A more general version of the Sum of Inefficiencies Lemma is as follows.

(The proof is the same.)

Lemma 4.9. Let ε,∆ > 0 and n ∈ N. There exists L = L(ε,∆, n) > 0

such that the following holds. Let

α1, . . . , αn+1 = α1

and

β11, . . . , β1j1 , . . . , βn1, . . . , βnjn

be geodesic segments on S such that α1β11 . . . β1j1 . . . αnβn1 . . . βnjn is a piece-

wise geodesic closed curve on S. If I(αiβiαi+1) ≤ ∆ and l(αi) ≥ L, then∣∣∣∣∣I([α1β11 . . . β1j1 . . . αnβn1 . . . βnjn ])−
n∑
i=1

I(αiβi1 . . . βijiαi+1)

∣∣∣∣∣ ≤ ε.
Proof. It directly follows from the Long Segment Lemma. �

We will use the theory of inefficiency for two purposes: first, to control the

geometry of piecewise geodesic arcs and closed curves, and second, to precisely

estimate the length of the associated geodesic arcs and closed curves.

For example, suppose that [α, β] is a closed curve, that α and β meet

nearly at right angles at the two places they meet, and that α and β are both

long. Then l(γ) is close to l(α) + l(β) − log 4 where γ is the corresponding

closed geodesic.

As a second example, suppose α1, α2, α3 is a piecewise geodesic arc, and

let α12 be the geodesic arc homotopic rel endpoints to α1α2. Likewise, define

α23 and α123. Then

l(α123) = l(α1) + l(α2) + l(α3) + I(α12) + I(α23),

provided that I(α12), I(α23) ≤ ∆ and l(α2) ≥ L(∆).
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5. The Geometric Square Lemma

In this section we will prove the Geometric Square Lemma (Lemma 5.4),

which will then be reformulated as the Algebraic Square Lemma in the next

section. This section is probably the hardest and most technical section in

the paper, and the reader who is still struggling to have a clear idea of where

we are going may wish to skip to the next section and see how the Algebraic

Square Lemma follows from the Geometric one.

From now on we can think of the surface S as being fixed. We also

fix ε > 0. However, for the reader’s convenience we always emphasize how

quantities may depend on S and ε.

5.1. Notation and preliminary lemmas. By an oriented closed geodesic C

on S we will mean an isometric immersion C : TC → S, where TC = R/l(C),

and l(C) is the length of C. To simplify the notation, by C : R → S we also

denote the corresponding lift. (Such a lift is uniquely determined once we fix a

covering map π : R→ TC .) We call TC the parametrizing torus for C (because

TC = R/l(C) is a 1-torus). By a point on C we mean C(p) where p ∈ TC , or

p ∈ R. Given two points a, b ∈ R, we let C[a, b] be the restriction of C : R→ S

to the interval [a, b]. If b < a, then the orientation of the segment C[a, b] is the

negative of the orientation for C. Of course C[a+nl(C), b+nl(C)] is the same

creature for n ∈ Z. By C ′(p) we denote the unit tangent vector to C with the

appropriate orientation.

Recall that T 1H2 denotes the unit tangent bundle, where elements of

T 1(H2) are pairs (p, u), where p ∈ H2 and u ∈ T 1
pH2. The tangent space T 1

p

has a complex structure, and given u ∈ T 1S, by
√
−1u ∈ T 1

pS we denote the

vector obtained from u by rotating for π
2 .

Recall that for u, v ∈ T 1
pH2, we let Θ(u, v) denote the unoriented angle

between u and v. If u ∈ T 1
pH2, then u@q ∈ T 1

qH2 denotes the vector u parallel

transported to q along the geodesic segment connecting p and q. We use similar

notation for points in T 1S, except that in this case one always has to specify

the segment between p and q along which we parallel transport vectors from

T 1
pS to T 1

q S.

We refer to the following lemma as the Convergence Lemma. The proof

is left to the reader.

Lemma 5.1. Suppose A and B are oriented geodesics in H2 that are

E-nearly homotopic, and let

a :

ñ
− l(A)

2
,
l(A)

2

ô
→ H2, b :

ñ
− l(B)

2
,
l(B)

2

ô
→ H2

denote the unit time parametrization. Set l = 1
2 min(l(A), l(B)). Then there

exists 0 ≤ t0 ≤ E such that for t ∈ [−l, l], the following inequalities hold :
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(i) d(a(t), b(t+ t0)) ≤ e|t|+E+1−l;

(ii) Θ(a′(t)@b(t+ t0), b′(t+ t0)) ≤ e|t|+E+1−l.

Let (p, u) and (q, v) be two vectors from T 1(H2). We define the distance

function

dis((p, u), (q, v)) = max(Θ(u@ q, v), d(p, q)).

(We do not insist that dis is a metric on T 1H2.)

Let α : [a, b]→ H2 be a unit speed geodesic segment. We let i(α) = α′(a)

and t(α) = α′(b). We have the following lemma. (We omit the proof)

Lemma 5.2. Let ε, L > 0. There exists a constant ε′(L) with the following

properties. Suppose that α : [a0, a1] → H2 and β : [b0, b1] → H2 are ε-nearly

homotopic, that is, d(α(ai), β(bi)) ≤ ε. Suppose that a1 − a0 > L, and ε < 1.

Then

dis(α′(ai), β
′(bi)) ≤ ε(1 + ε′(L)),

with ε′(L)→ 0 as L→∞.

5.2. The Preliminary Geometric Square Lemma (the PGSL). Suppose

Cij , i, j = 0, 1, are four closed geodesics on S, and imagine that Cij is covered

by two overlapping arcs C+
ij and C−ij , where C+

i0 and C+
i1 are nearly homotopic

and likewise for C−0j and C−1j . The Geometric Square Lemma (GSL) states that∑
(−1)ijCij = 0.

The full statement of the GSL is given in Section 5.3.

The following is the Preliminary Geometric Square Lemma. We have

added hypothesis (v) to the GSL (Lemma 5.4) so as to find points in the

two convergence intervals of the four curves, which are nearly diametrically

opposite.

Lemma 5.3 (Preliminary Geometric Square Lemma). Let E, ε > 0. There

exist constants K = K(ε, E) > 0 and R0(S, ε, E) > 0 with the following proper-

ties. Suppose that we are given four oriented geodesics Cij ∈ Γε,R, i, j = 0, 1,

and for each ij we are given four real numbers x−ij < x+
ij < y−ij < y+

ij <

x−ij + l(Cij). Assume that

(i) The inequalities x+
ij − x

−
ij > K and y+

ij − y
−
ij > K , hold.

(ii) the segments Cij [x
−
ij , x

+
ij ] and Ci′j′ [x

−
i′j′ , x

+
i′j′ ] are E-nearly homotopic, and

likewise the segments Cij [y
−
ij , y

+
ij ] and Ci′j′ [y

−
i′j′ , y

+
i′j′ ] are E-nearly homo-

topic, for any i, j, i′, j′ ∈ {0, 1};
(iii) the segments C0j [x

−
0j , y

+
0j ] and C1j [x

−
1j , y

+
1j ] are E-nearly homotopic;

(iv) the segments Ci0[y−i0, x
+
i0 + l(Ci0)] and Ci1[y−i1, x

+
i1 + l(Ci1)] are E-nearly

homotopic;

(v) y+
00 − x

−
00 ≥ R+K and x+

00 + l(C00)− y−00 ≥ R+K .
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Then for R > R0, we have

(6)
∑

i,j=0,1

(−1)i+jCij = 0

in Π10ε,R homology.

Remark. Hypothesis (v) is satisfied provided that y+
00 − y

−
00 ≥ R.

Proof. Set K = 1+E−log ε. For simplicity we write l(Cij) = lij . We claim

that we can find x00 ∈ [x−00 + K
2 , x

+
00− K

2 + 1] and y00 ∈ [y−00 + K
2 , y

+
00− K

2 ] such

that y00 − x00 = R. If y−00 ≤ x
−
00 +R, we let x00 = x−00 + K

2 and y00 = x00 +R.

If y−00 ≥ x
−
00 +R, we let y00 = y−00 + K

2 and x00 = y00 −R.

By the Convergence Lemma (Lemma 5.1), and by the choice of the con-

stant K, we can find x−ij < xij < x+
ij and y−ij < yij < y+

ij so that

dis(C ′ij(xij), C
′
00(x00)), dis(C ′ij(yij), C

′
00(y00)) ≤ ε,

and the pairs of geodesic segments C0i[x0i, y0i] and C1i[x1i, y1i], and Ci0[yi0, xi0
+ li0] and Ci1[yi1, xi1 + li1] are ε-nearly homotopic.

Let Iij = yij−xij and Jij = xij + lij−yij , so Iij +Jij = lij . Then I00 = R

and J00 = l00 −R, so |J00 −R| < 2ε.

Also, by the triangle inequality, we have |I01 −R| = |I01 − I00| < 2ε. So

|J01 −R| ≤ |I01 −R|+ |l01 − 2R| ≤ 4ε.

Then

|J1j −R| ≤ |J0j −R|+ |J1j − J0j | < 6ε,

so

|I1j −R| ≤ |J1j −R|+ |l1j − 2R| < 8ε.

Therefore, we get |Iij −R|, |Jij −R| < 8ε for i, j ∈ {0, 1}.
We take

α00 ∈ Connε,R+log 4(
√
−1C ′(x00),−

√
−1C ′(y00)),

and we let αij be the geodesic arc connecting xij and yij that is ε-nearly

homotopic to α00 (see Figure 4). Then dis(i(αij), i(α00)),dis(t(αij), t(α00))

≤ 2ε. Therefore, because dis(C ′ij(xij), C
′
00(x00)) ≤ ε and dis(C ′ij(yij), C

′
00(y00))

≤ ε, we have

αij ∈ Conn3ε,R+log 4(
√
−1C ′(xij),−

√
−1C ′(yij)).

Define Πij as the pants generated from Cij by adding the third connection αij .

Denote by Aij and Bij the other two cuffs of Πij , oriented such that

∂Πij = Cij −Aij −Bij ,

where Aij is freely homotopic to the closed broken geodesic Cij [xij , yij ]α
−1
ij ,

and Bij to Cij [yij , xij + lij ]αij .
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x−ij

xij

y−ij x+
ij

y+
ij

−iC ′(yij) iC ′(xij)

yij

Figure 4. The Preliminary Geometric Square Lemma

Applying Lemma 4.8, we obtain

|l(Aij)− 2R| < |Iij −R|+ 10ε < 20ε

and, similarly, |l(Bij) − 2R| < 20ε, so Πij ∈ Γ10ε,R. Finally, Ai0 = Ai1, and

B0j = B1j , so

0 =
∑

i,j=0,1

(−1)i+j∂Πij =
∑

i,j=0,1

(−1)i+jCijt

in Π10ε,R homology, which proves the lemma. �

5.3. The Geometric Square Lemma.

Lemma 5.4 (Geometric Square Lemma). Let E, ε > 0. There exist con-

stants K1 = K1(S, ε, E) > 0 and R0(S, ε, E) > 0 with the following properties.

Suppose that we are given four oriented geodesics Cij ∈ Γε,R, i, j = 0, 1, and for

each ij we are given 4 points x−ij < x+
ij < y−ij < y+

ij < x−ij + l(Cij). Assume that

(i) The inequalities x+
ij − x

−
ij > K1, and y+

ij − y
−
ij > K1, hold.

(ii) The segments Cij [x
−
ij , x

+
ij ] and Ci′j′ [x

−
i′j′ , x

+
i′j′ ], are E-nearly homotopic,

and likewise the segments Cij [y
−
ij , y

+
ij ] and Ci′j′ [y

−
i′j′ , y

+
i′j′ ], are E-nearly

homotopic, for any i, j, i′, j′ ∈ {0, 1}.
(iii) The segments C0j [x

−
0j , y

+
0j ] and C1j [x

−
1j , y

+
1j ] are E-nearly homotopic.

(iv) The geodesic segments Ci0[y−i0, x
+
i0 + l(Cij)] and Ci1[y−i1, x

+
i1 + l(Cij)] are

E-nearly homotopic.

Then for R > R0, we have

(7)
∑

i,j=0,1

(−1)i+jCij = 0,

in Π100ε,R homology.
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Proof. Below we use L0 = L0(S, ε, E) and K0 = (S, ε, E) to denote two

sufficiently large constants whose values will be determined in the course of

the argument. The constant Q0 can depend on K0 and L0. The constants K1

and R0 (from the statement of the GSL) can depend on K0 and L0 and Q0.

Each of these constants will be implicitly defined as a maximum of expressions

in terms of constants that precede the given constant in the partial order of

dependence that we just have described.

If we cannot apply the PGSL, then possibly interchanging the roles of the

x’s and the y’s, we find that

x+
00 ≤ y

−
00 − l00 +R+K(ε, E)

< y−00 −R+K(ε, E) + 1,

where K = K(ε, E) is the constant from the previous lemma. We then let

y00 = y−00 +Q0 and let w00 = y00 −R. (We assume that Q0 > K.) Then

(8) w00 > x+
00 + 10,

provided Q0 > K + 11, and

y−00 +Q0 ≤ y00 ≤ y+
00 +Q0 −K1,

which implies

(9) y−00 + 2(E − log ε) + 10 ≤ y00 ≤ y+
00 − 2(E + log ε)− 10,

provided Q0 ≥ 2(E − log ε) + 10 and K1 ≥ Q0 + 2(E − log ε) + 10.

Therefore, by the Convergence Lemma we can find yij in the interval

[y−ij , y
+
ij ] such that dis(C ′ij(yij), C

′
00(y00)) ≤ ε. We then let

wij = yij −R
≥ x+

ij + 10

(providedQ0 > E +K + 12)

≥ x−ij +K1

≥ x−ij + 2(E − log ε) + 10

(providedK1 > 2(E − log ε) + 10).

It follows from Lemma 5.1 that Ci0[wi0, yi0] and Ci1[wi1, yi1] are ε C1

nearly homotopic. (Two segments are C1 nearly homotopic if the two initial

and the two terminal vectors are ε close in the tangent bundle respectively.)

The point is that these two segments are contained into much larger segments

that are E-nearly homotopic.

Let (q, v) ∈ T 1S, and take βi0 ∈ Connε,L0(v,−
√
−1C ′i0(wi0)) (where we

assume that L0 > L0(ε,S) and L0(ε,S) is the constant from the Connection

Lemma (Lemma 3.1)). We take α00 ∈ Connε,R+log 4−L0(
√
−1C ′00(y00), v) (see

Figure 5). Then we find αij ∈ Conn3ε,R+log 4−L0(
√
−1C ′ij(yij), v) and βij ∈
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x+
ij

wij

βij

v
q

x−ijy+
ij

yij

y−ij

αij

Figure 5. The Geometric Square Lemma

Conn3ε,L0(v,−
√
−1C ′ij(wij) such that α00 and αij are ε-nearly homotopic and

βi0 and βi1 are 2ε-nearly homotopic for every i, j = 0, 1.

Let Πij be the pair of pants generated by the geodesic segment Cij [wij , yij ],

the broken geodesic segment β−1α−1
ij and, last but not least, the geodesic

segment (Cij [yij , wij + lij ])
−1. The reader can verify that it is a topological

pair of pants.

Let Aij be the closed geodesic freely homotopic to αijβijCij [wij , yij ] and

let Bij be the one for Cij [yij , wij + lij ]β
−1
ij α

−1
ij . Then ∂Πij = Cij −Aij −Bij .

Using the second inequality from the remark just after the Sum of In-

efficiencies Lemma (see Lemma 4.8), we find that |l(Aij) − 2R| ≤ 13ε and

|l(Bij)− 2R| ≤ 15ε. Hence Πij ∈ Π10ε,R.

Observe that Ai0 = Ai1, so∑
i,j=0,1

(−1)i+jCij −
∑

i,j=0,1

(−1)i+j∂Πij =
∑

i,j=0,1

(−1)i+jBij .

Let the a−ij , a
−
ij , b

−
ij , and b−ij be real numbers andBij : R→ Bij be a parametriza-

tion of the geodesic Bij so that Bij(a
−
ij), Bij(a

+
ij), Bij(b

−
ij), and Bij(b

+
ij) are the

projections of points q, Cij(y
+
ij), Cij(x

−
ij), and Cij(x

+
ij) respectively onto the

geodesic Bij . The points q, Cij(y
+
ij), Cij(x

−
ij), and Cij(x

+
ij) belong to the bro-

ken geodesic Cij [yij , wij + lij ]β
−1
ij α

−1
ij , and we project them to Bij by choosing

lifts of Bij and Cij [yij , wij + lij ]β
−1
ij α

−1
ij in H2 that have the same endpoints

and then use the standard projection onto the lift of Bij .
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It follows from the Convergence Estimate that each of q, Cij(y
+
ij), Cij(x

−
ij)

and Cij(x
+
ij) are within distance 1 of the corresponding projections on Bij .

Then

b+ij − b
−
ij ≥ x

+
ij − x

−
ij − 2

≥ K0

(providedK1 > K0 + 2)

and

a+
ij − a

−
ij ≥ R− L0 − 3 +K1 −Q0 − E − 1

≥ R+K0

(providedK1 > K0 +Q0 + L0 + E + 4).

Assuming that K0 ≥ K(10ε, E + 2) (where K is the constant from the

PGSL), we find that the differences b+ij − b−ij and a+
ij − a−ij satisfy the lower

bound from the PGSL. (Observe that b+ij and b−ij are E + 2 close and similarly

for the a’s.) Also, the Bij ’s are in Γ10ε,R. So we apply the PGSL to show that∑
i,j=0,1

(−1)i+jBij = 0

in Π100ε,R homology.

Here we explain why the assumptions of the PGSL are satisfied. For

each i, piecewise geodesics αi0−Ci0[yi0, x
+
i0] and αi1−Ci1[yi1, x

+
i1] are E-nearly

homotopic; it follows from Lemma 4.1 that Bi0[a−i0, a
+
i0] and Bi1[a−i1, a

+
i1] are

(E + 4)-nearly homotopic.

Likewise,

C0j [x0j , w0j ]β
−1
0j α

−1
0j C0j [y0j , y

+
0j ]

and

C1j [x1j , w1j ]β
−1
1j α

−1
1j C1j [y1j , y

+
1j ]

are E-nearly homotopic (because the individual segments are), and hence

B0j [b
−
0j , a

+
0j ] and B1j [b

−
1j , a

+
1j ] are. �

Randomization (Randomization remarks for the GSL). Let ε, E > 0. Ev-

ery constant K below may depend only on ε, S and E.

Below we will define a partial map g :
(....

Γ 1,R

)4
→ RΠ100ε,R such that

(i) g is defined on any input (Cij , x
±
ij , y

±
ij) that satisfies hypotheses (i)–(iv) of

GSL;

(ii)
∑

(−1)i+jCij = ∂g(Cij , x
±
ij , y

±
ij);

(iii) g is K-semirandom with respect to measures classes Σ�4
....
Γ

on
(....

Γ 1,R

)4
and

σΠ on Π1,R.



THE EHRENPREIS CONJECTURE 37

We first define a partial function g0 :
(....

Γ 1,R

)4
→ RΠ10ε,R that is defined

on inputs (Cij , x
±
ij , y

±
ij) that satisfy the extra hypothesis (v) from the PGSL.

Given such an input, we follow the construction of the PGSL to construct xij
and yij , and we observe that because these new points are bounded distance

from the old ones, the map (Cij , x
±
ij , y

±
ij) → (Cij , xij , yij) is K-semirandom as

a partial map from
(....

Γ 1,R

)4
to
( ..
Γ1,R

)4
, with respect to the measure classes

Σ�4
....
Γ

on
(....

Γ 1,R

)4
and Σ�4

..
Γ

on
( ..
Γ1,R

)4
.

Then we take a random third connection

α00 ∈ Connε,R+log 4(
√
−1C ′00(x00),−

√
−1C ′00(y00)).

Likewise for αij . Adding the third connection αij to Cij we obtain the pants

Πij(αij). We claim that distinct αij lead to distinct pants Πij(αij). The third

connection αij is ε-close to the unique simple geodesic arc on Πij(αij) that is

orthogonal to γij at both ends. On the other hand, no two distinct αij are

ε-close, so assuming that the injectivity radius of the surface S is at least 2ε,

we find that distinct αij give distinct Πij(αij).

So, for each input (Cij , xij , yij), by adding a random third connection αij
we construct the pants Πij(αij). So far, we have been using the term “random”

to mean arbitrary. In these randomization remarks we will also interpret the

phrase “a random element of a finite set S” as “the random element of RS,”

namely 1
|S|
∑
x∈S x.

We can then think of every map f : S → T that we have implicitly

constructed in the text as the associated linear map f : RS → RT defined by

f(
∑
aixi) =

∑
aif(xi). So, for example, we let

αij ∈ Connε,R+log 4(
√
−1C ′ij(xij),−

√
−1C ′ij(yij))

be the random element of

Connε,R+log 4(
√
−1C ′ij(xij),−

√
−1C ′ij(yij)),

and then Πij(αij) is the image of αij by the linear form of the map αij →
Πij(αij).

In this manner we have constructed a partial map from
..
Γ1,R → Π1,R

(defined by (Cij , xij , yij)→ Πij(αij); compare with Lemma 3.2 ), and we claim

that it is K-semirandom with respect to Σ..
Γ

and σΠ. To verify this claim we

need to show that for any given pants Π ∈ Π1,R, the weight of Π is at most

Ke−3R. Let C be a cuff of Π, and choose points x, y ∈ C that lie in certain

unit length intervals on C. Let Conn be the set of all good third connections

between x and y. (By this we mean all connections α so that C and α produce

a pair of pants in Π1,R.) The set Conn has approximately eR−K elements.

Moreover, there is a unique third connection α ∈ Conn so that α and C yield
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the given pair of pants Π. So, the total weight of Π is at most eK−R times the

total weight for the three choices of C ∈ ∂Π (with associated unit intervals),

and we conclude that the total weight for Π is at most 3eK−Re−2R = Ke−3R.

Also, the map
Ä
Πij

ä
i,j∈{0,1} 7→

∑
(−1)i+jΠij is of course 4-semirandom

from (Π4
1,R,Σ

�4
Π ) to (RΠ1,R,ΣΠ). Composing the above maps we construct

the map g0 and see that g0 is K-semirandom.

For the general case, similarly as above we first define the map

h : (Cij , x
±
ij , y

±
ij)→ RΠ1,R

according to our second construction, on every input (Cij , x
±
ij , y

±
ij) that satisfies

conditions (i)–(iv) of the GSL, but not condition (v) of the PGSL.

We construct yij and wij as before. The map (Cij , x
±
ij , y

±
ij)→ (Cij , yij , wij)

is K-semirandom. Then we find the connections αij and βij . There are at least

eR−K of the αij (we only fix a single βij), and each third connection αijβij leads

to a new pair of pants Πij(αijβij). Let N denote the number of connections

αij . (By construction, the number N does not depend on i and j.) This defines

the map

h(Cij , x
±
ij , y

±
ij) =

∑ 1

N
Πij(αijβij),

and we can verify that h is K-semirandom.

Then we observe that ∂B : Πij → Bij formed by taking the appropriate

boundary curve of the Πij we constructed is K-semirandom, so the induced

map h̃ : (Cij , x
±
ij , y

±
ij) → (Bij , aij , bij) is as well. So the map g1 defined by

g1(Cij , x
±
ij , y

±
ij) =

∑
(−1)i+jΠij + g0(Bij , a

±
ij , b
±
ij) is K-semirandom, and hence

g = g0 + g1 is as well.

6. The Algebraic Square Lemma

We prove the Algebraic Square Lemma, which will be used in almost all

of our subsequent identities in the Good Pants Homology. In particular, it will

allow us to encode an element of π1(S, ∗) as a sum of good pants and then

prove that the encoding of products of elements of π1(S, ∗) is the sum of their

encodings.

6.1. Notation. Let ∗ ∈ S denote a point that we fix once and for all.

By π1(S, ∗) we denote the fundamental group of a pointed surface. If A ∈
π1(S, ∗), we let ·A· be the geodesic segment from ∗ to ∗ homotopic to A. By

[A] we denote the closed geodesic on S that is freely homotopic to ·A·. If

A1, . . . , An ∈ π1(S, ∗) we let ·A1 · A2 · . . . · An· be the piecewise geodesic arc

that is the concatenation of the arcs ·Ai·. We let [·A1 · A2 · . . . · An· ] be the

closed piecewise geodesic that arises from the arc ·A1 ·A2 · . . . ·An· by noticing

that the starting and the ending point of ·A1 · A2 · . . . · An· are the same. By
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l([A]) is the length of the closed geodesic [A]. By l(·A ·) we mean of course the

length of the geodesic arc ·A·, and in general by l(·A1 · . . . ·An·) the length of

the corresponding piecewise geodesic arc.

Remark. Observe that for any Xi ∈ π1(S, ∗), i = 0, . . . , n − 1, the closed

geodesics [XjXj+1 . . . Xn+j−1] are one and the same. (We are taking the indices

modulo n.) We will call this rotation and often use it without warning.

We remind the reader that ·AB· is a geodesic arc from ∗ to ∗ representing

AB, while ·A · B· is a concatenation of two geodesic arcs. Similarly, ·AB · C·
is a concatenation of two geodesic arcs, while ·A · B · C· is a concatenation of

three, and so on.

In particular, we have the following statements about the inefficiency func-

tion:

I(·A1 · . . . ·An·) =
∑

l(·Ai ·)− l(·A1A2 . . . An ·)

and

I([·A1 · . . . ·An· ]) =
∑

l(·Ai ·)− l([A1 . . . An]).

Notice that we may have (and will usually have)

I([·A1 · . . . ·An· ]) > I(·A1 · . . . ·An·).

6.2. The Algebraic Square Lemma (the ASL). The following is the Alge-

braic Square Lemma.

Lemma 6.1 (Algebraic Square Lemma). Let ε,∆ > 0. There exist con-

stants K(S, ε,∆) = K and R0 = R0(S, ε,∆) so that for R > R0, the following

holds. Let Ai, Bi, U, V ∈ π1(S, ∗), i = 0, 1, be such that

(i)
∣∣∣l([AiUBjV ])− 2R

∣∣∣ < 2ε, i, j = 0, 1;

(ii) I([·Ai · U ·Bj · V ·]) < ∆;

(iii) l(·U ·), l(·V ·) > K .

Then ∑
ij

(−1)i+j [AiUBjV ] = 0

in Π100ε,R homology.

Proof. For each i, j ∈ {0, 1}, we project the closed piecewise geodesic

[·Ai · U · Bj · V ·] onto the closed geodesic γij = [AiUBjV ]. By Lemma 4.6

we find that each appearance of ∗ is moved at most distance E = ∆
2 + 1

by the projections. Let γij(x
±
ij) and γij(y

±
ij) be the projections of ∗ on γij

before and after U , and before and after V , respectively. Then providing that

our K is at least 2E plus the corresponding constant from the GSL, we have

x−ij < x+
ij < y−ij < y+

ij < x−ij+l(γij) and the hypotheses of the Geometric Square
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Lemma. We conclude that∑
ij

(−1)i+j [AiUBjV ] = 0

in Π100ε,R homology. �

Randomization (Randomization remarks for the ASL). Let ε, δ > 0. By

K we denote any constant that may depend only on ε, S, and ∆.

Below we will define a partial map

f : G2 ×G×G2 ×G→ RΠ1,R

such that

(i) f is defined on any input (Ai, U,Bj , V ) that satisfies the assumptions of

the ASL;

(ii)
∑

(−1)i+j [AiUBjV ] = ∂f(Ai, U,Bj , V );

(iii) f is K-semirandom with respect to the classes of measures Σ�2
G × ΣG ×

Σ�2
G × ΣG on G2 ×G×G2 ×G and σΠ on Π1,R.

Let h be a partial map

h : G2 ×G×G2 ×G→
(....

Γ 1,R

)4

defined by letting h(Ai, U,Bj , V ) = (Cij , x
±
ij , y

±
ij), where Cij = [AiUBjV ], and

x±ij and y±ij are the points on the parametrizing torus for Cij such that the points

Cij(x
±
ij) and Cij(y

±
ij) are the corresponding projections of the four copies of the

base point ∗ (which belong to the closed piecewise geodesic [·Ai ·U ·Bj ·V ·]) to

the closed geodesic Cij . (These projections were defined above.) It follows from

Lemmas 10.2 and 10.3 that h is K-semirandom. Let g :
(....

Γ 1,R

)4
→ RΠ1,R

be the K-semirandom map from the previous section. (See the randomization

remarks for the GSL.) Then f = g ◦ h is K-semirandom.

6.3. The Sum of Inefficiencies Lemma in the algebraic notation. The fol-

lowing lemma follows from Lemma 4.8.

Lemma 6.2 (Sum of Inefficiencies Lemma in the algebraic notation).

Let ε,∆ > 0 and n ∈ N. There exists L = L(ε,∆, n) > 0 such that if

U1, . . . , Un+1 = U1, X1, . . . , Xn ∈ π1(S, ∗), and I(·Ui · Xi · Ui+1) ≤ ∆, and

l(· ot Ui ·) ≥ L, then∣∣∣∣∣I([·U1 ·X1 · U2 ·X2 · . . . · Un ·Xn ·])−
n∑
i=1

I(·Ui ·Xi · Ui+1·)
∣∣∣∣∣ ≤ ε.

Remark. In particular, we can leave out the X’s in the above lemma and

write ∣∣∣∣∣I([·U1 · U2 · . . . · Un ·])−
n∑
i=1

I(·Ui · Ui+1 ·)
∣∣∣∣∣ ≤ ε,
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providing that I(·Ui · Ui+1 ·) ≤ ∆ and l(·Ui ·) ≥ L. Moreover, by the Long

Segment Lemma for Angles (for L large enough), we have∣∣∣∣∣I([·U1 · U2 · . . . · Un ·])−
n∑
i=1

I(θi)

∣∣∣∣∣ ≤ 2ε,

where θi = Θ(t(·Ui ·), i(·Ui+1 ·)).

Similarly, the following lemma follows from Lemma 4.9.

Lemma 6.3. Let ε,∆ > 0 and n ∈ N. There exists L = L(ε,∆, n) > 0

such that if U1, . . . , Un+1 = U1 ∈ π1(S, ∗) and X11, . . . , X1j1 , . . . , Xn1, . . . , Xnjn ∈
π1(S, ∗), and I(·Ui ·Xi · Ui+1) ≤ ∆, and l(·Ui ·) ≥ L, then∣∣∣∣∣I([·U1 ·X11 · . . . ·X1j1 · . . . · Un ·Xn1 · . . . ·Xnjn ·])

−
n∑
i=1

I(·Ui ·Xi1 · . . . ·Xiji · Ui+1 ·)
∣∣∣∣∣ ≤ ε.

Finally, we have the Flipping Lemma.

6.4. The Flipping Lemma. For X ∈ π1(S, ∗), we let X̄ = X−1 denote the

inverse of X.

Lemma 6.4 (Flipping Lemma). Let ε,∆ > 0. There exists a constant

L = L(ε,∆) > 0 with the following properties. Suppose A,B, T ∈ π1(S, ∗),
and

I(·T ·A · T̄ ·), I(· T̄ ·B · T ·) ≤ ∆,

and l(·T ·) ≥ L. Then∣∣I([·T ·A · T̄ ·B ·])− I([·T · Ā · T̄ ·B ·])
∣∣ < ε,

and therefore ∣∣l([TAT̄B])− l([TĀT̄B])
∣∣ < ε.

Proof. By the Long Segment Lemmas,∣∣I(·T ·A · T̄ ·B · T ·)− I(·T ·A · T̄ ·)− I(· T̄ ·B · T ·)
∣∣ < ε

4

and ∣∣I(·T ·A · T̄ ·B·)− I(·T ·A · T̄ ·B · T ·)
∣∣ < ε

4
.

Likewise, ∣∣I(·T · Ā · T̄ ·B · T ·)− I(·T · Ā · T̄ ·)− I(· T̄ ·B · T ·)
∣∣ < ε

4

and ∣∣I(·T · Ā · T̄ ·B·)− I(·T · Ā · T̄ ·B · T ·)
∣∣ < ε

4
.
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But I(·T ·A · T̄ ·) = I(·T · Ā · T̄ ·), because ·T ·A · T̄ · is the same as ·T · Ā · T̄ ·
with reversed orientation. So∣∣I([·T ·A · T̄ ·B ·])− I([·T · Ā · T̄ ·B ·])

∣∣ < ε.

Similarly, we conclude
∣∣l([TAT̄B])− l([TĀT̄B])

∣∣ < ε. �

7. Applications of the Algebraic Square Lemma

In this section we will describe the encoding of an element A of π1(S, ∗) as

a sum AT of good pants. (The encoding depends on a choice of a sufficiently

large element T of π1(S, ∗).)
In brief, we let

AT =
1

2

(
[TAT̄B]− [TĀT̄B]

)
for suitable B, and we then observe that the Algebraic Square Lemma implies

that different choices of B give the same element of the good pants homology.

We can then easily prove that

[TAT̄B] = AT +BT̄ ,

which we call the Two-Part Itemization Lemma. We want to go one step

further and prove that

[TAT̄BTCT̄D] = AT +BT̄ + CT +DT̄

for suitable A,B,C,D and T .

It turns out that in order to prove this Four-Part Itemization Lemma, we

must first prove that

[TAT̄BTCT̄D] = [TAT̄DTCT̄B].

This is indeed the most difficult lemma of this section.

We would then be able to go ahead and prove a Six-Part Itemization

Lemma and so forth, but the Four-Part Itemization Lemma is sufficient for

our purposes.

We state several results and definitions (notably the definition of AT in

the next lemma) that depend on an element T ∈ π1(S, ∗) and ∆ > 0. We treat

both T and ∆ as parameters, and the exact value of both T and ∆ (which are

then used in the proof of the main theorem) will be determined in Section 9.

7.1. The definition of AT . For A, T ∈ π1(S, ∗) and ε,R > 0, we let

FConnε,R(A, T ) be the set of all B ∈ π1(S, ∗) such that [TAT̄B], [TĀT̄B] ∈
Γε,R, and I(· T̄ ·B · T ·) < 1.

Lemma 7.1. Let ε,∆ > 0. There exists a constant L = L(S, ε,∆) such

that if A, T ∈ π1(S, ∗) and I(·T · A · T̄ ·) ≤ ∆, and l(·T ·) ≥ L, and 2R −
l(·A ·)− 2l(·T ·) ≥ L, then



THE EHRENPREIS CONJECTURE 43

(i) FConnε,R(A, T ) is nonempty, and log
∣∣∣FConnε,R(A, T )

∣∣∣ ≥ 2R− l(·A ·)−
2l(·T ·)−∆− L;

(ii) [TAT̄B] − [TĀT̄B] = [TAT̄B′] − [TĀT̄B′] in Π100ε,R homology for any

B,B′ ∈ FConnε,R(A, T ).

We then let

AT =
1

2

Ä
[TAT̄B]− [TĀT̄B]

ä
for a random B ∈ FConnε,R(A, T ).

Remark. Part (ii) of Lemma 7.1 implies that for any B ∈ FConnε,R(A, T ),

we have

AT =
1

2

Ä
[TAT̄B]− [TĀT̄B]

ä
in Π100ε,R homology. Also, it is important to note that [A] is equal to AT in

the standard homology H1.

Proof. Suppose that ·B· ∈ Connε,R′(−i(·T ·), i(·T ·)), where R′ = 2R −
l(·A ·) − 2l(·T ·) − I(·T · A · T̄ ·). The set Connε,R′(−i(·T ·), i(·T ·)) will be

nonempty (by the Connection lemma (Lemma 3.1)) provided L is large. Then,

by the Sum of Inefficiencies Lemma,∣∣l([TAT̄B])− 2R
∣∣ < ε+O(ε2)

and ∣∣l([TĀT̄B])− 2R
∣∣ < ε+O(ε2),

provided l(·T ·) is large. Thus, with slight abuse of notation, we have

Connε,R′(−i(·T ·), i(·T ·)) ⊂ FConnε,R(A, T ),

and

log
∣∣Connε,R′(−i(·T ·), i(·T ·)

∣∣ ≥ 2R− l(·A ·)− 2l(·T ·)− L

if L is large, so we have proved statement (i) of the lemma.

Again, by the Sum of Inefficiencies Lemma, the inefficiency of the piecewise

geodesic [·T ·A · T̄ ·B· ] is at most ∆+2. Then statement (ii) follows, provided

L (and hence (l(·T ·)) is large, from the Algebraic Square Lemma. �

Randomization (Randomization remarks for AT ). All constants K may

depend only on ε, ∆, and S and T ∈ π1(S, ∗).
Letting BA ∈ RG denote the random element of FConnε,R(A, T ), we

consider the map A → BA from G to RG. If l(·A ·) ∈ [a, a + 1], we find that

l(·B ·) ∈ [La, Ra], where La = 2R−a−2l(·T ·)−∆−4 and Ra = 2R−a−2l(·T ·)
for all B ∈ FConnε,R(A, T ). Because∣∣∣FConnε,R(A, T )

∣∣∣ > eLa−L
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(where L = L(ε,S) from the Connection Lemma), and σa(G) ≤ K (see the

appendix for the definition of σa), we find that for any X ∈ G,

(A→ BA)∗σa(X) ≤ KeL−La

if l(·X ·) ∈ [La, Ra], and (A→ BA)∗σa(X) = 0 otherwise. This implies

(A→ BA)∗σa ≤ K
bRbc∑

k=bLac
ek+L−Laσk,

which in turn implies that the map A→ BA is K-semirandom with respect to

ΣG and ΣG.

We define [AT̄BAT ] by

[AT̄BAT ] =
1

|FConnε,R(A, T )|
∑

B∈FConnε,R(A,T )

[AT̄BT ].

The map A → (A, T ) is el(·T ·) semirandom by the remark stated just

before the Principles of randomization section in the appendix.

Then the partial maps from G to RG4 defined by A→ (A, T̄ , BA, T ) and

A→ (Ā, T̄ , BA, T ) are Ke2l(·T ·)-semirandom with respect to ΣG and Σ4
G, and

hence the map

A→ AT =
1

2

(
[AT̄BAT ]− [ĀT̄BAT ]

)
is Ke2l(·T ·)-semirandom with respect to ΣG and σΓ.

The map (A,B′) → (A,BA, B
′) is K-semirandom with respect to Σ×2

G

and Σ×3
G , and (A,BA, B

′)→ (A, Ā, T̄ , BA, B
′, T ) is Ke2l(·T ·)-semirandom with

respect to Σ×3
G and Σ�2

G × ΣG × Σ×2
G × ΣG.

Also, by the Algebraic Square Lemma, the map (A, Ā, T̄ , B,B′, T )→ Π ∈
RΠ1,R, such that

∂Π = [TAT̄B]− [TĀT̄B]− [TAT̄B′] + [TĀT̄B′],

is K-semirandom from G2×G×G2×G to Π1,R, with respect to the measure

classes Σ�2
G ×ΣG×Σ�2

G ×ΣG and σΠ. Composing the above mappings we find

a Ke2l(·T ·)-semirandom map g : G2 → RΠ1,R such that

∂g(A,B′) = AT −
1

2

(
[TAT̄B′]− [TĀT̄B′]

)
.

Remark. At the end of the paper we will see that T and ∆ only depend

on S and ε.

7.2. The Two-part Itemization Lemma. The following lemma is a corol-

lary of the previous one, and we refer to it as the Two-part Itemization Lemma.

Lemma 7.2 (Two-part Itemization Lemma). Let ε,∆ > 0. There exists

a constant L = L(S, ε,∆) > 0 such that for any A,B, T ∈ π1(S, ∗) such that
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[TAT̄B] ∈ Γε,R, we have [TAT̄B] = AT + BT̄ in Π200ε,R homology, provided

that l(·T ·), l(·A ·), l(·B ·) > L and I([·T ·A · T̄ ·B ·]) ≤ ∆.

Proof. It follows from Lemma 6.4 that [TĀT̄B] ∈ Γ2ε,R. In order to apply

Lemma 7.1, we need an upper bound on I(·T · Ā · T̄ ·) and a lower bound on

2R− l(·A·)−2l(·T ·). These follow from l(·B·), l(·T ·) ≥ L, I([·T ·A · T̄ ·B ·]) ≤
∆, and the Sum of Inefficiencies Lemma.

We observe

[TAT̄B] =
1

2

Ä
[TAT̄B]− [B̄T ĀT̄ ]

ä
=

1

2

Ä
[TAT̄B]− [TĀT̄ B̄]

ä
=

1

2

Ä
[TAT̄B]− [TĀT̄B]

ä
+

1

2

Ä
[T̄BTĀ]− [T̄ B̄T Ā]

ä
= AT +BT̄

in Π200ε,R homology. �

Randomization (Randomization remarks for the Two-part Itemization

Lemma). We have implicitly defined a map g : G2 → RΠ100ε,R such that

∂g(A,B) = AT + BT − [AT̄BT ]. The map g is Ke2l(·T ·)-semirandom with

respect to ΣG × ΣG and σΠ.

Remark. In fact it should be true that

(10) [TA1T̄B1 . . . TAnT̄Bn] =
n∑
i=1

(Ai)T + (Bi)T̄ ,

provided l(·T ·) is large given I(TAiT̄ ) and I(T̄BiT ). Above we proved this

when n = 1 (provided l(·A ·) and l(·B ·) are large), and we will prove it in the

rest of this section for n = 2, using the ADCB lemma, which we prove next.

The general case can be proved by induction using the cases n = 1 and n = 2

(but we will only need this statement for n = 1, 2).

Remark. We also observe that under the usual conditions we have ATU =

AU in Π100ε,R homology. This follows from the fact that 2ATU = [TUAŪT̄B]+

[TUAŪT̄ B̄] = [UAŪT̄BT ] + [UAŪT̄ B̄T ] = 2AU .

7.3. The ADCB Lemma.

Claim. Let δ,∆ > 0. There exists L = L(∆, δ) > 0 with the following

properties. Let Ai, Bi, T ∈ π1(S, ∗), i = 0, 1. If l(·T ·) > L and I(· T̄ ·Ai · T ·),
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then∣∣∣∣∣∣l([A0TB0T̄A1TB1T̄ ])−
1∑
i=0

l(· T̄AiT ·)−
1∑
i=0

l(·TBiT̄ ·) + 4l(·T ·)

∣∣∣∣∣∣ < δ.

Proof. By the Sum of Inefficiencies Lemma we have that

I([·A0 ·B0 · T̄ ·A1 · T ·B1 · T̄ · ])

is close to ∑
i=0,1

I(· T̄ ·Ai · T ·) + I(·T ·Bj · T̄ ·).

By the definition of inefficiency, the number

l([A0TB0T̄A1TB1T̄ ])− 4l(T )−
∑
i=0,1

Ä
l(Ai) + l(Bi)

ä
−
∑
i=0,1

(
l(· T̄AiT ·) + l(·TBiT̄ ·)− 4l(T )− l(Ai)− l(Bi)

)
is small in absolute value. The claim now follows from the Sum of Inefficiencies

Lemma. �

Lemma 7.3 (ADCB Lemma). Let ε,∆>0. There exists L=L(S, ε,∆)>0

and R0 = R0(S, ε,∆) > 0 with the following properties. Let A,B,C,D, T ∈
π1(S, ∗) such that l(·B ·), l(·D ·), l(·T ·) > L. If R > R0 and

I(·T ·A · T̄ ·), I(·T · C · T̄ ·), I(·T ·B · T̄ ·), I(·T ·D · T̄ ·) ≤ ∆,

then [ATBT̄CTDT̄ ] = [ATDT̄CTBT̄ ] in Π200ε,R homology provided that the

curves in question are in Γε,R.

Proof. Let 〈X,Y 〉 = [ATXT̄CTY T̄ ] for X,Y ∈ π1(S, ∗), and let {X,Y }
= 〈X,Y 〉 − 〈Y,X〉 when both are in Γε,R. We claim that

(11) {X,Y0} = {X,Y1}

in Π100ε,R whenever I(TXT̄ ), I(TYiT̄ ) ≤ ∆ and the curves in question are in

Γε,R. To verify (11) we let Ai = Yi, B0 = ATXT̄C, B1 = CTXT̄A, and U = T̄

and V = T , where Ai, Bi, U, V are from the statement of the Algebraic Square

Lemma. Since by rotation

〈X,Y0〉 = [Y0T̄ATXT̄CT ]

〈Y0, X〉 = [Y0T̄CTXT̄AT ]

〈X,Y1〉 = [Y1T̄ATXT̄CT ]

〈Y1, X〉 = [Y1T̄CTXT̄AT ],
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equation (11) follows from the Algebraic Square Lemma. (The hypotheses in

the Algebraic Square Lemma follow from the hypothesis of this lemma and the

Sum of Inefficiencies Lemma.) Likewise,

(12) {X0, Y } = {X1, Y }

under the appropriate hypotheses.

In order to prove the lemma we first suppose that |l(·TBT̄ ·)− l(·TDT̄ ·)|
< ε

4 . If L is large enough (and hence l(·B ·),l(·D ·) and l(·T ·) are large

enough), it follows from the Connection Lemma that we can find a random

geodesic arc

·E· ∈ Connε,l(·TBT̄ ·)−2l(·T ·)(−i(·T ·), i(·T ·)).

For any such E, we have |l(·TBT̄ ·) − l(·TET̄ ·)| < ε + O(ε2). Therefore, by

the previous claim we have that the curves 〈B,E〉, 〈E,B〉, 〈D,E〉, and 〈E,D〉
are in Γ2ε,R. Then from (11) and (12) it follows that

{B,D} = {B,E} = {D,E} = {D,B},

and therefore {B,D} = 0, in Π200ε,R homology.

More generally, if l(·B ·), l(·D ·) > L, let k be the smallest integer such

that

k > 4
|l(·TDT̄ ·)− l(·TBT̄ ·)|

ε
.

Set

ri =
i

2k
l(·TDT̄ ·) +

2k − i
2k

l(·TBT̄ ·)− 2l(·T ·).

For 0 < i < 2k, we take random ·Ei· ∈ Connε,ri(t(·T ·), i(T̄ )) (observe that

ri > L−∆), and we let E0 = D and E2k = B. Then

{E0, E2k} = {E1, E2k}
= {E1, E2k−1} = {E2, E2k−1}

= {E2, E2k−2} = {E3, E2k−2}
. . .

= {Ek−1, Ek+1} = {Ek, Ek+1}

and {Ek, Ek+1} = 0 in Π200ε,R homology by the first case, so we are finished.

�

Randomization (Randomization remarks for the ADCB Lemma). All con-

stants K may depend only on ε, S and ∆. We have defined a map g : G4 →
RΠ1,R such that

∂g(A,B,C,D) = [ATBT̄CTDT̄ ]− [ATDT̄CTBT̄ ].
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In particular, we defined h : G5 → RΠ1,R so that

∂h(A,C,X, Y0, Y1) = {X,Y0} − {X,Y1}.

This map h is e4l(·T ·)K-semirandom with respect to the measure classes Σ×2
G ×

ΣG × Σ�2
G and ΣΠ.

Then g(A,B,C,D) is a sum of 2k terms of the form ∂h(A,C,X, Y0, Y1),

where each of X,Y0, Y1 is either B or D, or Ei, which is a K-semirandom

element of G with respect to ΣG. Moreover, the Yi are always independent

from X. Therefore, for each choice we make of X,Y0, Y1 (such as X = Ei,

Y0 = E2k−i, Y1 = E2k−i+1 or X = B, and Y0 = D, Y1 = E), the map

from (A,B,C,D) to (A,C,X, Y0, Y1) is K-semirandom with respect to Σ×4
G

and Σ×2
G × ΣG × Σ�2

G . Therefore, noting that k < b8Rc
ε , we find that g is

KRe4l(·T ·)-semirandom, with respect to Σ×4
G .

Remark. This remark is about the previous randomization remark. Where

B and D are close in length, we can write {B,D} = {B,B} by (11), and

hence {B,D} = 0. But we are letting (X,Y0, Y1) be (B,D,B), and the map

(B,D) → (B,D,B) is not 1-semirandom for Σ×2
G and ΣG × Σ�2

G (because X

and Y1 are not independent). This map is only el(·B ·)-semirandom, which is

no good. It is for this reason that we introduce E.

The following lemma is a corollary of the ADCB Lemma. We call it the

Four-part Itemization Lemma.

Lemma 7.4 (Four-part Itemization Lemma). Let ε,∆ > 0. There exists

L = L(ε,∆) > 0 such that for any A,B,C,D, T ∈ π1(S, ∗), we have

[AT̄BTCT̄DT ]− [T̄ D̄T C̄T̄ B̄T Ā] = 2(AT̄ +BT + CT̄ +DT )

in Π200ε,R homology provided that l(·T ·) > L and I(·A·T̄ ·B ·T ·C ·T̄ ·D ·T ·) <
∆, and the curve [AT̄BTCT̄DT ] is in Γε,R.

Proof. Recall the remark after the statement of Lemma 7.1. We have

[AT̄BTCT̄DT ]− [ĀT̄BTCT̄DT ] = 2AT̄ ,

[ĀT̄BTCT̄DT ]− [ĀT̄ B̄TCT̄DT ] = 2BT ,

[ĀT̄ B̄TCT̄DT ]− [ĀT̄ B̄T C̄T̄DT ] = 2CT̄ ,

[ĀT̄ B̄T C̄T̄DT ]− [ĀT̄ B̄T C̄T̄ D̄T ] = 2DT

in Π100ε,R homology. (All the curves in question lie in Γ2ε,R by the Flipping

Lemma.) So

[AT̄BTCT̄DT ]− [ĀT̄ B̄T C̄T̄ D̄T ] = 2(AT̄ +BT + CT̄ +DT )

in Π100ε,R homology. But

[ĀT̄ B̄T C̄T̄ D̄T ]− [ĀT̄ D̄T C̄T̄ B̄T ] = 0

in Π200ε,R homology by the ADCB Lemma, so we are finished. �
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Randomization (Randomization remark for the Four-part Itemization

Lemma). We have defined g : G4 → RΠ1,R such that

∂g(A,B,C,D) = [ATBT̄CTDT̄ ]− (AT̄ +BT + CC̄ +DT ).

This map is KRe4l(·T ·)-semirandom with respect to Σ×4
G and σΠ for some

K = K(ε,S).

8. The XY Theorem

In this section we prove the XY Theorem, which states that

(XY )T = XT + YT

for suitable X,Y and T .

The XY Theorem will be the central identity in the last section of the

paper; it will allow us to reduce the encoding of long elements of π1(S, ∗) to

encoding of the generators. To prove the XY Theorem we will first prove two

related statements called the First and the Second Rotation Lemmas. These

are in turn proven with the Four-Part Itemization Lemma and the estimates

from the Theory of Inefficiency.

8.1. The Rotation Lemmas. Let X,Y, Z ∈ π1(S, ∗). Then we have the

three geodesic arcs ·X ·, ·Y ·, and ·Z·. Consider the union of these three geo-

desic arcs as a θ-graph on the surface S. This θ-graph generates an immersed

pair of pants in S if and only if the triples of unit vectors i(·X ·), i(·Y ·), i(·Z ·)
and t(·X ·), t(·Y ·), t(·Z ·) have the opposite cyclic orderings.

The following is the First Rotation Lemma.

Lemma 8.1 (First Rotation Lemma). Let ε,∆ > 0. There exists K =

K(ε,∆) > 0 with the following properties. Let Ri, Si, T ∈ π1(S, ∗), i = 0, 1, 2,

such that

(i) I(·T ·Ri · R̄i+1 · T̄ ·), I(·T · Si · S̄i+1 · T̄ ·) < ∆.

(ii) l(·T ·) ≥ K .

(iii) l(·Ri ·) + l(·Si ·) + 2l(·T ·) < R−K .

(iv) The triples of vectors
Ä
t(·TRi ·)

ä
and

Ä
t(·TSi ·)

ä
, i = 0, 1, 2, have opposite

cyclic ordering in T 1
∗S. (One of them is clockwise and the other one anti-

clockwise.)

Then

(13)
2∑
i=0

(Ri+1R̄i)T +
2∑
i=0

(SiS̄i+1)T = 0

in Π300ε,R homology.
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Figure 6. The Rotation Lemma

Remark. It follows by relabeling that if max(l(·Ri ·)) + max(l(·Si ·)) +

2l(·T ·) < R − K and the triples of vectors
Ä
t(·TRi ·)

ä
and

Ä
t(·TSi ·)

ä
, i =

0, 1, 2, have the same cyclic ordering in T 1
∗S, then

(14)
2∑
i=0

(RiR̄i+1)T +
2∑
i=0

(SiS̄i+1)T = 0

in Π300ε,R homology.

Proof. Let ri ≥ 0, i = 0, 1, 2, be the solutions of the equations

(15) ri + ri+1 = 2R− l(·TRi+1R̄iT̄ ·)− l(·TSiS̄i+1T̄ ·).

Then we let Ai be a random element of Connε,ri(−i(·T ·), i(·T ·)).
Consider the three elements R̄iT̄AiTSi of π1(S, ∗) and the correspond-

ing geodesic arcs · R̄iT̄AiTSi ·. We will show that the corresponding θ-graph

generates an immersed pair of pants ΠA in S. The three cuffs of ΠA are the

closed curves [R̄i+1T̄Ai+1TSi+1S̄iT̄ ĀiTRi]. We will also show that these closed

geodesics have length 3ε close to 2R, which implies that ΠA ∈ Π3ε,R.

We finish the argument as follows. Taking the boundary of ΠA, we obtain

2∑
i=0

[R̄iT̄AiTSiS̄i+1T̄ Āi+1TRi+1] = 0
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in Π3ε,R homology. Applying the Four-part Itemization Lemma we find

0 =
2∑
i=0

[Ri+1R̄iT̄AiTSiS̄i+1T̄ Āi+1T ]

=
2∑
i=0

(
(Ri+1R̄i)T + (Ai)T̄ + (SiS̄i+1)T + (Āi+1)T̄

)
=

2∑
i=0

(RiR̄i+1)T +
2∑
i=0

(SiS̄i+1)T

in Π300ε,R, because (Ai)T̄ = −(Āi)T̄ .

We now verify that [R̄iT̄AiTSiS̄i+1T̄ Āi+1TRi+1] ∈ Γ2ε,R. By the New

Angle Lemma (Lemma 4.2) applied to β = ·T̄ · and α = ·T · Ri·, for K large

enough (and therefore l(·T ·) large), the angle Θ
Ä
i(·T ·), i(·TRi+1R̄iT̄ ·)

ä
≤

ε
10 , and likewise Θ

Ä
t(· T̄ ·), t(·TRi+1R̄iT̄ ·)

ä
≤ ε

10 , and for the same with Ri

replaced with Si. It follows that Θ
Ä
t(· Āi+1 ·), i(·TRi+1R̄iT ·)

ä
< 2ε, and so

on. So by the Sum of Inefficiencies Lemma (using equation (5)),∣∣∣l([R̄iT̄AiTSiS̄i+1T̄ Āi+1TRi+1])− l(·Ai ·)− l(·TRi+1R̄iT̄ ·)− l(·Ai+1 ·)

− l(·TSiS̄i+1T̄ ·)
∣∣∣ < O(ε2),

and moreover by (15), we have∣∣l(·Ai ·) + l(·TRi+1R̄iT̄ ·) + l(·Ai+1 ·) + l(·TSiS̄i+1T̄ ·)− 2R
∣∣ < 2ε,

which proves the claim.

We now verify that the θ-graph associated to the geodesic arcs · R̄iT̄AiTSi ·
generates an immersed pair of pants ΠA in S. We find the unique θ0 ∈ [0, π]

such that I(π − θ0) = ∆ + 1 (so π − θ0 = 2 sec−1(e
∆+1

2 )). Observe that

I(· R̄i · T̄ ·) < I(·T ·Ri+1 · R̄i · T̄ ·) ≤ ∆. Then l(· R̄iT̄ ·) > l(·T ·)−∆ > K−∆.

By the Sum of Inefficiencies Lemma for Angles,

I(π −Θ
Ä
i(· R̄iT̄ ·), i(· R̄i+1T̄ ·)

ä
)− 1 < I(·TRi+1 · R̄iT̄ ·)

≤ I(·T ·Ri+1 · R̄i · T̄ ·) < ∆.

Therefore, Θ
Ä
i(· R̄iT̄ ·), i(· R̄i+1T̄ ·)) > θ0.

On the other hand, by the New Angle Lemma, because the geodesic arc

· R̄iT̄ · is long for large enough K (we showed above that l(· R̄iT̄ ·) > K −∆),

we have Θ
Ä
i(· R̄iT̄ ·), i(· R̄iT̄AiTSi ·)

ä
< θ0

2 , so the cyclic order of the triple

of vectors i(· R̄iT̄AiTSi ·), i = 0, 1, 2, is the same as of the triple of vectors

i(· R̄iT̄ ·), and likewise the cyclic order of the triple of vectors t(· R̄iT̄AiTSi ·),
i = 0, 1, 2, is the same as of the triple of vectors t(·TSi ·). So the corresponding

cyclic orderings are opposed and we are finished. �
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Randomization (Randomization remark for the First Rotation Lemma).

We let K = K(ε,S). We have defined g : G6 → RΠ1,R such that

∂g(R0, R1, R2, S0, S1, S2) =
2∑
i=0

(Ri+1R̄i)T + (SiS̄i+1)T .

Let Π denote the pants whose θ-graph is made out of the three connections

· R̄iT̄AiTSiS̄i+1T̄Ai+1TRi+1 ·, i = 0, 1, 2. We can write

g((Ri), (Si)) = Π +
2∑
i−0

g1(Ri+1R̄i, Ai, SiS̄i+1, Āi+1),

where g1 is the map from the Four-part-Itemization Lemma (see the random-

ization remark). So g is K(e12l(·T ·) + Re4l(·T ·))-semirandom with respect to

Σ×6
G and ΣΠ.

The Second Rotation Lemma is

Lemma 8.2 (Second Rotation Lemma). Let ε,∆ > 0. There exists K =

K(ε,∆) > 0 with the following properties. Let Ri, T ∈ π1(S, ∗), i = 0, 1, 2,

such that

(i) I(·T ·Ri · R̄i+1 · T̄ ·) < ∆,

(ii) l(·T ·) ≥ K .

Then

(16)
2∑
i=0

(RiR̄i+1)T = 0

in Π300ε,R homology.

Proof. Given T , we choose v ∈ T 1
∗S and let ρ = e

2πi
3 . We take L suffi-

ciently large so that Connε,L(t(·T ·), ρiv) is nonempty for i = 0, 1, 2. Then we

choose ·Si· ∈ Connε,L(t(·T ·), ρiv). Then I(·T ·Si ·S̄i+1 ·T̄ ·) ≤ log 4
3 +O(ε) ≤ 1,

by the Sum of Inefficiencies for Angles Lemma, so when l(·T ·) is large we can

apply the previous Lemma (see the remark after Lemma 8.1) with Ri := Si to

obtain

2
2∑
i=0

(SiS̄i+1)T = 0

in Π300ε,R homology.

Then given Ri as in the hypothesis to this lemma, we obtain

2∑
i=0

(SiS̄i+1)T + (RiR̄i+1)T = 0,

and so
2∑
i=0

(RiR̄i+1)T = 0. �
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Randomization (Randomization remark for the Second Rotation Lemma).

All constants K may only depend on ε and S. We have defined g : G3 → RΠ1,R

such that

∂g(R0, R1, R2) =
2∑
i=0

(RiRi+1)T .

We are fixing S0, S1, S2 of length L, so the triple (S0, S1, S2) is e3L-semi-

random, and the maps

(R0, R1, R2)→ (R0, R1, R2, S0, S1, S2)

and

(R0, R1, R2)→ (S0, S1, S2, S0, S1, S2)

are e3L and e6L semirandom respectively.

Then letting g1R be the g for the First Rotation Lemma, we can letter

g(R0, R1, R2) = g1R

Ä
(Ri), (Si)

ä
− 1

2
g1R

Ä
(Si), (Si)

ä
and g1R is KRe12l(·T ·) semirandom, so g is KRe6L+12l(·T ·) semirandom.

8.2. The XY Theorem. The following theorem follows from the Second

Rotation Lemma. We call it the XY Theorem.

Theorem 8.1 (XY Theorem). Let ε,∆>0. There exists K=K(ε,∆)>0

with the following properties. Let X,Y, T ∈ π1(S, ∗), i = 0, 1, 2, such that

(i) I(·T ·X · Y · T̄ ·), I(·T ·X · T̄ ·), I(·T · Y · T̄ ·) < ∆;

(ii) l(·T ·) ≥ K .

Then (XY )T = XT + YT in Π300ε,R homology.

Proof. Set R0 = id, R1 = X, and R2 = Ȳ , and apply the previous lemma.

�

Randomization. We have defined the map gXY : (X,Y ) → RΠ1,R such

that ∂gXY (X,Y ) = (XY )T − XT − YT . (The map gXY is defined on the

appropriate subset of Σ2
G described in the statement of Theorem 8.1.) This map

is RKe12l(·T ·)-semirandom with respect to Σ×2
G and σΠ, where K = K(ε,∆).

9. The endgame

In this last section of the main text of the paper, we prove that every

good curve is good pants homologous to a sum of encodings of a given set of

standard generators for π1(S, ∗).
We prove this in three steps:

1. We prove in Lemma 9.2 that every good curve is good pants homologous

to a sum of two encodings of two elements of π1(S, ∗); these elements are

represented by geodesic segments of length about R.
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2. We use theXY Theorem and Lemma 9.3 to repeatedly writeXT = (X1)T+

(X2)T where X1 and X2 have length about half that of X. This allows

us to reduce an encoding of an arbitrary element of π1(S, ∗) to a sum of

encodings of elements of bounded length (bounded in terms of S and ε)

3. We use the XY Theorem to reduce the encoding of an element of π1(S, ∗)
of bounded length to a sum of encodings of generators. This requires the

proper choice of T , which is discussed in Lemma 9.1.

9.1. The good pants homology of short words. The following is the Good

Direction Lemma.

Lemma 9.1 (Good Direction Lemma). For any finite set W ⊂ π1(S, ∗),
we can find ∆ = ∆(S,W ) such that for any L, we can find T ∈ π1(S, ∗) such

that l(·T ·) > L and I(·T ·X · T̄ ·) < ∆, when X ∈W .

Proof. For any v ∈ T 1
∗S and t > 0, we let αt(v) be the geodesic segment of

length t such that i(αt(v)) = v, and we let α∞(v) be the corresponding infinite

geodesic ray. We claim that for any X ∈ π1(S, ∗) and X 6= id, there are at

most two v ∈ T 1
∗S such that

(17) lim
t→∞

I(α−1
t (v) ·X · αt(v)) =∞.

To prove the claim we lift ·X· to the universal cover H2, and thus get two

lifts of ∗, and hence two lifts of v. We observe that (17) holds if and only if

the two lifts of α∞(v) end at the same point of ∂H2. The map that maps one

lift of α∞(v) to the other is the deck transformation that maps one lift of ∗ to

the other. The relation (17) holds if and only if α∞(v) is a fixed point of the

Möbius transformation M , and since M is not the identity this can be true for

at most two vectors v. �

In the rest of this section we fix a set of standard generators g1, . . . , g2n

of π1(S, ∗). (Here n is the genus of S.) Recall that H1 denotes the standard

homology on S. Let [gi] denote the corresponding closed curves. For any closed

curve γ ⊂ S, there are unique a1, . . . , a2n such that γ =
∑
ai[gi] in H1. We

define q : Γ→ Rπ1(S, ∗) by q(γ) =
∑
aigi, where Γ is the set of all closed curves

on S. We extend the definition of q to a map q : π1(S, ∗)→ R{g1, . . . , g2n} by

q(X) = q([X]).

For l ∈ N, we define the set Wl as the set of elements X ∈ π1(S, ∗) that

can be written as a product of at most l generators (or their inverses).

Theorem 9.1. Let ε > 0. For all l ∈ N and L > 0, we can find T ∈
π1(S, ∗) and R0 such that l(·T ·) > L, and for R > R0 and X ∈Wl, we have

XT = (q(X))T

in Π300ε,R homology.
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Remark. Here we extended the partial map (· )T : π1(S, ∗)→ RΓε,R (given

by X 7→ XT ) to a partial map (· )T : Rπ1(S, ∗)→ RΓε,R. We remind the reader

that XT depends implicitly on R and ε.

Proof. We take ∆ = ∆(Wl) and T = T (Wl, L) from the previous lemma,

so l(·T ·) > L and I(·T ·X · T̄ ) < ∆ for all X ∈Wl. If X ∈W1, then q(X) = X

or q(X) = −X̄, so XT = (q(X))T .

Take 1 ≤ k < l, and assume XT = ((q(X))T in Π300ε,R homology for

all X ∈ Wk. Then for any X ∈ Wk+1, we can write X = gσi Y , for some

i ∈ {1, . . . , 2n}, and σ = ±1, and Y ∈Wk. Then XT = (gσi )T + YT by the XY

Theorem (see Theorem 8.1), which requires

I(·T ·X · T̄ ·), I(·T · gσi · T̄ ·), I(·T · Y · T̄ ·) < ∆,

and YT = (q(Y ))T by assumption, so XT = ((q(X))T . We conclude the theo-

rem by induction. �

Randomization (Randomization remarks for Theorem 9.1). Given l, L, T

and R (and ε), we have implicitly defined the map gW : Wl → Π300ε,R such

that ∂gW (X) = XT − (q(X))T . The map gW arises from a sum of at most

l applications of the XY Theorem, so gW is K(S)RKe12l(·T ·)-semirandom,

because every measure in ΣG has total mass at most K(S).

9.2. Preliminary lemmas. We now observe that every good curve is good

pants homologous to (X0)T + (X1)T for suitable X0 and X1 from π1(S, ∗).

Lemma 9.2. There exists a universal constant ε̂ > 0 such that for every

0 < ε < ε̂, there exist constants L = L(ε,S) > 0 and R0 = R0(ε,S) > 0 with

the following properties. For any γ ∈ Γε,R and T ∈ π1(S, ∗), l(·T ·) > L, we

can find X0, X1 ∈ π1(S, ∗) such that

(i) |l(·Xi ·)− (R+ 2L− log 4)| < 1
2 ;

(ii) Θ(t(·T ·), i(·Xi ·)), Θ(t(·Xi ·), i(· T̄ ·)) ≤ π
6 ;

(iii) γ = (X0)T + (X1)T in Π300ε,R homology

for R > R0.

Proof. We take at random two points x0 and x1 on the parametrizing

torus Tγ that are hl(γ) apart, and we let wi ∈ T 1
xiS be −

√
−1γ′(xi). We let

γi be the subsegment of γ from xi to xi+1 (where x2 = x0).

For i = 0, 1, we take αi ∈ Conn ε
10
,L(t(·T ·), wi), where L = L(ε,S) is

the constant from the Connection Lemma. (That is, we choose L so that the

set Conn ε
10
,L(t(·T ·), wi) is nonempty.) Observe that the piecewise geodesic

arc α0γ0α
−1
1 begins and ends at the point ∗, so we let X0 ∈ π1(S, ∗) denote

the corresponding element of π1(S, ∗). Similarly, we let X1 ∈ π1(S, ∗) be the

element that corresponds to the curve α1γ1α
−1
0 .
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It follows from the remark after Lemma 4.8 that inequality (i) of the

statement of the lemma holds. On the other hand, by the New Angle Lemma

the angle Θ(i(·X0 ·), i(α0)) is as small as we want providing that l(α0) > L is

large enough. (Here we use that the inefficiency I(α0γ0α
−1
1 ) is bounded above.)

Since by construction the angle Θ(i(α0), t(·T ·)) is less than ε
10 , we conclude

that for L large enough, we have Θ(t(·T ·), i(·X0 ·)) < π
6 . Other cases are

treated similarly.

Let ·A· be a random element of Conn ε
10
,R′(−i(·T ·), i(·T ·)), where R′ =

R+ log 4− 2L− 2l(·T ·). Then∣∣l([X0T̄ ĀT ])− 2R
∣∣ < ε,

∣∣l([X1T̄AT ])− 2R
∣∣ < ε,

so γ = [X0T̄ ĀT ]+[X1T̄AT ] in Πε,R homology, because the three curves bound

a good pair of pants.

Moreover, [X0T̄ ĀT ] = (X0)T + (Ā)T̄ , and [X1T̄AT ] = (X1)T + AT̄ in

Π100ε,R homology by the Two-part Itemization Lemma. Since (Ā)T̄ = −AT̄
we conclude γ = (X0)T + (X1)T in Π300ε,R homology. �

Randomization (Randomization remarks for Lemma 9.2). We have defined

the maps qC : Γ1,R → RG (by qC(γ) = X0 +X1) and gC : Γ1,R → RΠ1,R, such

that ∂gC(γ) = γ − (qC(γ))T (where A→ AT maps RG→ RΓ1,R).

The map qC is eLK-semirandom with respect to σΓ and ΣG. The map gC
is e2l(·T ·)K(S, ε) semirandom with respect to σΓ and σΠ, where K = K(S, ε).

We have the following definition. For any X,T ∈ π1(S, ∗), X 6= id, we let

θTX = max{Θ(t(·T ·), i(·X ·)),Θ(t(·X ·), i(· T̄ ·))}.

Lemma 9.3. For L > L0(S) and X,T ∈ π1(S, ∗), X 6= id, then we can

write X = X0X1, for some X0, X1 ∈ π1(S, ∗), such that

(i)
∣∣∣l(·Xi ·)− ( l(·X ·)

2 + L− log 2)
∣∣∣ < 1

2 ;

(ii) I(·X0 ·X1 ·) ≤ 2L+ 3;

(iii) θTXi ≤ max{θTX + eL+4e−l(·Xi ·), π6 }.

Proof. We let α = ·X·. Then α : [0, l(·X ·)] → S is the unit speed para-

metrization with α(0) = α(l(·X ·)) = ∗. We let y = l(·X ·)
2 . Then for L

large enough, we can find β ∈ Conn 1
20
,L(t(·T ·),

√
−1α′(y)). (As always, L is

determined by the Connection Lemma.)

Then α[0, y]β−1 begins and ends at ∗, so it represents some X0 ∈ π1(S, ∗).
Likewise βα[y, l(·X ·)] represents some X1 ∈ π1(S, ∗), and X = X0X1. More-

over, it follows from the remark after Lemma 4.8 that∣∣∣∣∣l(·Xi ·)−
Ç

l(·X ·)
2

+ L− log 2

å∣∣∣∣∣ < 1

2
.

Condition (ii) follows immediately from (i).
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Let θ = Θ(i(·X ·), i(·X0 ·)). Then by the hyperbolic law of sines, assum-

ing that l(·Xi ·) ≥ 1 (which follows if we assume that l(α) ≥ L−1 is at least 1),

we obtain

sin(θ) ≤ sinh(L+ 1)

sinh(l(·X0 ·))
≤ eL+2−l(·X0 ·).

Therefore,

Θ(t(·T ·), i(·X0 ·)) ≤ Θ(t(·T ·), i(·X ·)) + eL+4−l(·X0 ·).

By similar reasoning we find that Θ(t(·X0 ·),−i(β)) ≤ e2−L < π
12 , assum-

ing that L is large enough. Also by construction, Θ(−i(β), t(·T ·)) < 1
20 <

π
12 ,

so Θ(t(·X0 ·), i(· T̄ ·)) ≤ π
6 . We proceed similarly for X1. �

Randomization (Randomization remarks for Lemma 9.3). We have defined

q̂D : G → G2 such that q̂D(X) = (X0, X1). If l(·X ·) ∈ [a, a + 1], then

l(·X0 ·), l(·X1 ·) ∈ [a2 + L′, a2 + L′ + 1], where L′ = L− log 2− 1
2 .

Moreover, given (X0, X1) ∈ G2, there is at most one X such that q̂D(X) =

(X0, X1) (because X = X0X1). We conclude that

(q̂D)∗σa ≤ e2L′+2σa
2

+L′ × σa
2

+L′ ,

and hence q̂D is e2L′+2-semirandom. It follows that the map qD : G → RG
defined by X → X0 +X1 is 2e2L′+2-semirandom.

9.3. Proof of Theorem 3.3. The following theorem implies Theorem 3.3.

Recall that {g1, . . . , g2n} denotes a standard basis for π1(S, ∗), where n is the

genus of S.

Theorem 9.2. Let ε > 0. There exists R0 = R0(S, ε) > 0 with the

following properties. There exists T ∈ π1(S, ∗), where T depends only on ε and

S, such that for every R > R0 and every γ ∈ Γε,R, we have

γ =
2g∑
i=1

ai(gi)T

in Π300ε,R homology for some ai ∈ Q.

Remark. To prove Theorem 3.3 we take hi = (gi)T . Since (gi)T is equal

to the closed curve on S that corresponds to gi in the standard homology H1,

it follows that hi is a basis for H1 (with rational coefficients).

Proof. We take L that is sufficiently large for Lemmas 9.2 and 9.3. We let

l ∈ N be such that X ∈ Wl whenever l(·X ·) < 2L+ 5. Then by Theorem 9.1

we can find T such that l(·T ·) > L and l(·T ·) > K(ε, 2L+ 3), where K(ε,∆)

is the constant from Theorem 8.1, and such that XT = (q(X))T in Π300ε,R

homology for all X ∈ Wl. We take R > R0(S, ε, L) from Lemma 9.2, and

R > R0(L, T ) from Theorem 9.1.



58 JEREMY KAHN and VLADIMIR MARKOVIC

Fix any γ ∈ Γε,R. By Lemma 9.2 we can find X0, X1 ∈ π1(S, ∗) such that

|l(·Xi ·)− (R+ 2L− log 4)| < 1

2

and

(18) γ = (X0)T + (X1)T

in Π300ε,R homology. Observe that q(γ) = q(X0) + q(X1).

By Lemma 9.3 we can write X0 = X00X01, where

(19) l(·X0i ·) ∈
îR

2
+ 2L,

R

2
+ 2L+ 1

ó
and the conclusions of Lemma 9.3 hold. And likewise for X1.

Let N = blog2Rc − 1. For every 0 ≤ k ≤ N , we define sets Xk by letting

X0 = {X0, X1} and the set Xk+1 is the set of children of elements of Xk. Each

set Xk has 2k+1 elements and the elements of Xk are not necessarily distinct.

(For the pedantic reader, we proceed as follows: Xk is a set of ordered pairs of

the form (a,X), when 0 ≤ a < 2k and X ∈ π1(S, ∗). If X0, X1 are constructed

from X according to Lemma 9.3, we let the children of (a,X) be (2a + i,Xi)

for i = 0, 1. Then we let X0 = {(i,Xi) : i = 0, 1} and let Xk+1 be the set of

children of Xi.)

Moreover, for any X ∈ Xk, we have

l(·X ·) ∈
î
R2−k + 2L,R2−k + 2L+ 1

ó
.

We claim that

θTX <
π

3
for every X in any Xk. For any such X, we can find a sequence Y0, Y1, . . . , Yk,

so that Y0 = X0 or Y0 = X1 and Yk = X, and where Yi+1 is a child of Yi. It

follows from equation (19) that l(·Yi+1 ·) ≤ l(·Yi ·)− 1, and l(·Yk ·) ≥ 2L− 2,

and

θTYk ≤
π

6
+

k∑
i=0

eL+4−l(·Yi ·)

≤ π

6
+

e

e− 1
eL+4−(2L−3) <

π

3
,

assuming L > 8.

By Lemma 4.3 we have I(·T · X · T̄ ·) ≤ log 4 for every X in every Xk.
Therefore, we can apply The XY Theorem (see Theorem 8.1) and conclude

that

(20) YT = (Y0Y1)T

whenever Y is a nontrivial node of our tree and Y0 and Y1 are its two children.
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It follows from (18) and (20) applied recursively that

γ =
∑

X∈XN

XT

in Π300ε,R homology. We know that if X∈XN , then X∈Wl, so XT =(q(X))T .

Therefore
γ =

∑
X∈XN

(q(X))T =
∑

((q(γ))T ,

and so we are finished. �

Randomization (Randomization remarks for the proof of Theorem 3.4).

We have determined T ≡ T (S, ε), so el(·T ·) = K(S, ε). We have implicitly

defined the map g : Γε,R → RΠ300ε,R such that ∂g(γ) = γ − (q(γ))T . We note

that q = qND ◦qC , where qC(γ) = X+X ′ from Lemma 9.2 and qD(X) = X0+X1

from Lemma 9.3.

Moreover,

g(γ) = gC(γ) +
N−1∑
i=0

gXY (q̂D(qiD(qC(γ)))) + gW (qND (qC(γ))),

where gC is the map from Lemma 9.2, qD and q̂D are the maps from Lemma 9.3,

gXY is the map from Theorem 8.1, N is the number of times we iterate the

division (the application of Lemma 9.3), and gW is from Theorem 9.1.

By far the most important point is that qD is K = K(S, ε)-semirandom, so

qiD is Ki-semirandom, for any i ≤ N (recall that N ≤ blog2Rc), and therefore

Ki ≤ Rlog2K , so the map qiD is P (R)-semirandom, where P (R) denotes a

polynomial in R).

9.4. The proof of Theorem 3.4. The map φ from Theorem 3.4 is defined

to be equal to the map g from the Randomization remarks for Theorem 9.2.

We take hi = (gi)T . Then ∂φ(γ) = γ − (q(γ))T and (q(γ))T ∈ R{h1, . . . , h2n},
for any γ ∈ RΓε,R. Moreover, the map φ is P (R)-semirandom as shown in

those Randomization remarks. This implies estimate (iii) of the statement of

Theorem 3.4, and we are finished.

10. Appendix 1

Introduction to randomization. Let (X,µ) and (Y, ν) denote two measure

spaces (where µ and ν are positive measures).

Definition 10.1. We say that a map g : (X,µ)→ (Y, ν) is K-semirandom

with respect to µ and ν if g∗µ ≤ Kν.

By RX we denote the vector space of finite formal sums (with real coef-

ficients) of points in X. There is a natural inclusion map ι : X → RX, where

ι(x) ∈ RX represents the corresponding sum. Then every map f̃ : RX → S,

where S is any set, induces the map f : X → S by letting f = f̃ ◦ ι.
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Let f : X → RY be a map. Then we can write f(x) =
∑
y fx(y)y, where

the function fx : Y → R is nonzero for at most finitely many points of Y . We

define |f | : X → RY by

|f |(x) =
∑
y

|fx(y)|y.

We define the measure |f |∗µ on Y by

|f |∗µ(V ) =

∫
X

(∑
y

|fx(y)|χV (y)

)
dµ(x),

for any measurable set V ⊂ Y , and χV (y) = 1 if y ∈ V , and χV (y) = 0 if

y /∈ V .

Definition 10.2. Let (X,µ) and (Y, ν) be two measure spaces (with posi-

tive measures µ and ν). A map f : X → RY is K-semirandom if |f |∗µ ≤ Kν.

A linear map f̃ : RX → RY is K-semirandom with respect to measures µ and

ν on X and Y respectively if the induced map f : X → RY is K-semirandom.

The following propositions are elementary.

Proposition 10.1. Let X , Y and Z denote three measure spaces. If

f : RX → RY is K-semirandom, and f : RY → RZ is L-semirandom, then

g ◦ f : RX → RZ is KL-semirandom.

Proposition 10.2. If fi : RX → RY is Ki-semirandom, i = 1, 2, and

λi ∈ R, then the map (λ1f1 + λ2f2) : RX → RY is (|λ1|K1 + |λ2|K2)-

semirandom.

Remark. We say that f : X → Y is a partial map if it is defined on some

measurable subset X1 ⊂ X. The notion of a semirandom maps generalizes to

the case of partial maps by letting a partial map f : X → Y be K-semirandom

if the restriction f : X1 → Y is K-semirandom, where the corresponding

measure on X1 is the restriction of the measure from X. Every statement we

make about semirandom maps has its version for a partial semirandom map.

In particular, if f : X → Y is K-semirandom, then the restriction of f onto

any X1 ⊂ X is K-semirandom. Moreover, trivial partial maps (those that are

defined on an empty set) are K-semirandom for any K ≥ 0.

A measure class on a space X is a subset of M(X) where M(X) is the

set of measures on X.

Definition 10.3. Let X and Y be measure spaces, and let M ⊂ M(X)

and N ⊂ M(Y ) be measures classes on X and Y respectively. (All measures

from M and N are positive measures.) We say f : X → Y is K semirandom

with respect to M and N if for every µ ∈ M there is ν ∈ N such that f is

K-semirandom with respect to µ and ν; that is, f∗µ ≤ Kν.
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In a similar fashion as above, we define the notion of a semirandom map

f : RX → RY with respect to classes of measures M and N on X and Y

respectively. The following proposition follows from Proposition 10.1.

Proposition 10.3. Let X , Y and Z denote three measure spaces, with

classes of measures M, N and Z respectively. If f : RX → RY is K-semi-

random with respect to M and N , and f : RY → RZ is L-semirandom with

respect to N and Z , then g ◦ f : RX → RZ is KL-semirandom with respect to

M and Z .

We say that a class of measures M is convex if it contains all convex

combinations of its elements. The following proposition then follows from

Proposition 10.2

Proposition 10.4. If fi : RX → RY is Ki-semirandom with respect to

classes of measures M and N , i = 1, 2, and if N is convex, then for λi ∈ R,

the map (λ1f1 + λ2f2) : RX → RY is (|λ1|K1 + |λ2|K2)-semirandom with

respect to M and N .

Remark. The space RX is naturally contained in the spaceM(X), and in a

similar way we can define the notion of a semirandom map f :M(X)→M(Y ).

Natural measure classes. Let Xi, i = 1, . . . , k, denote measure spaces with

measure classes Mi. Let X1 × · · · × Xk denote the product space, and by

πi : (X1 × · · · ×Xk)→ Xi denote the coordinate projections. By M1 ×M2 ×
· · · ×Mk, we denote the set of measures on X1 × · · · × Xk that arise as the

convex combinations of all standard products µ1× · · · × µk with µi ∈Mi. We

also define a natural class of measuresM1�M2� · · ·�Mk on X1×· · ·×Xk as

M1 �M2 � · · ·�Mk

= {µ ∈M(X1 × · · · ×Xk) : (∀i)(∃µi ∈Mi)((πi)∗µ ≤ µi)}.

This produces a large class of measures even if each Mi consists of a

single measure. If each Mi is convex, then M1 �M2 � · · · �Mk is as well.

If Xi = X and Mi =M, then the standard product measure on Xk is M×k
and the other class of measures is denoted by M�k.

We define the class L1 of Borel measures on R by saying that µ ∈ L1 if

µ[x, x+1) ≤ 1 for all x ∈ R. This is a closed convex class of measures. Likewise

we define the class of measures L1 on R/λZ for λ > 1 by saying that µ ∈ L1

if µ[x, x + 1) ≤ 1 for all x ∈ R/λZ. The class of measures L1 is the class of

measures that are controlled by the Lebesgue measure at the unit scale.

We consider the following spaces and their measure classes. In this paper,

we define several maps (or partial maps) between these spaces (or their powers)

and prove they are semirandom. We have
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(i) The space of curves Γ1,R with the measure class containing the single

measure σΓ that is defined by setting σΓ(γ) = Re−2R for every γ ∈ Γ1,R.

We may assume that ε is small enough so that Γε,R ⊂ Γ1,R.

(ii) The space of pants Π1,R with the measure class containing the single

measure σΠ given by σΠ(Π) = e−3R. We may assume that ε is small

enough so that Π300ε,R ⊂ Π1,R.

(iii) Let
.
Γ1,R = {(x, γ) : γ ∈ Γ1,R, x ∈ Tγ} denote the space of pointed curves.

(Recall that Tγ = R/l(γ)Z is the parametrizing torus for γ.) The space
.
Γ1,R is really just the union of parametrizing tori Tγ for curves γ ∈ Γ1,R.

By Σ .
Γ

we denote the measure class on
.
Γ1,R, such that µ ∈ Σ .

Γ
if the

restriction µγ = µ|Tγ is in e−2RL1, where L1 is the measure class on the

circle Tγ that was defined above.

(iv) Let
.k
Γ1,R = {(x1, . . . , xk, γ) : γ ∈ Γ1,R, xi ∈ Tγ} denote the space of curves

with k marked points. The space
.k
Γ1,R is canonically contained in

Ä .
Γ1,R

äk
.

The measure class Σk.
Γ

on
.k
Γ1,R is the restriction of Σ�k

.
Γ

on the image of

.k
Γ1,R in

Ä .
Γ1,R

äk
.

(v) The space G = π1(S, ∗) with the measure class ΣG that is the convex

closure of the collection of measures σa on G, where σa is defined so that

for X ∈ G, we have σa(X) = νa(l(·X ·))e−l(·X ·), where νa(x) = 1 if

x ∈ [a, a+ 1], and νa(x) = 0 otherwise.

We observe that there exists a constant K = K(S) such that for any

measure µ in any of the above defined measure classes, the total measure of µ

is bounded by K.

Finally we consider the map ∂ : Π1,R → RΓ1,R defined by ∂Π = γ0 + γ1

+ γ2, where γi are the three oriented boundary curves of Π. We observe that

∂ is K(S)-semirandom from σΠ to σΓ.

Standard maps are semirandom. We consider several standard mappings

and prove they are semirandom.

Lemma 10.1. Let l > 0 and a, b ≤ l − 1. Then for any Z ∈ G = π1(S, ∗)
such that l(·Z ·) = l, there are at most Ke

a+b−l
2 ways of writing Z = XY , with

l(·X ·) ∈ [a, a+ 1] and l(·Y ·) ∈ [b, b+ 1], for some K = K(S).

Proof. Suppose that X and Y satisfy the given conditions. Consider a

triangle in H2 whose sides are lifts of ·X·, ·Y · and ·Z ·. (These lifts are

denoted the same as the arcs we are lifting.) Then we drop the perpendicular

t from the vertex z opposite to ·Z · to the side ·Z ·, and we let a′ and b′ be

the lengths of the subintervals of ·Z · that meet at the endpoint of t on ·Z ·
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(then a′ + b′ = l(·Z ·)). For simplicity, set t = l(t). We find that

a ≤ l(·X ·) ≤ t+ a′ ≤ l(·X ·) + log 2 ≤ a+ 2

and, likewise, b ≤ t+ b′ ≤ b+ 2. So

t ∈
ï
a+ b− l

2
,
a+ b− l

2
+ 2

ò
and

a′ ∈
ï
a− b+ l

2
− 2,

a− b+ l

2
+ 2

ò
.

Therefore, the vertex z must lie in a disc of radius a+b−l
2 + 4 around the point

on Z that is a−b+l
2 away from the initial point of Z. It follows that there are

at most K(S)e
a+b−l

2 lifts of the base point in this disc, and we are finished. �

Let p : G×G→ G be the product map; that is, g(X,Y ) = XY .

Lemma 10.2. The map p : G×G→ G is K-semirandom with respect to

ΣG × ΣG on G2 and ΣG on G for some K = K(S).

Proof. Let a, b ∈ [0,∞), and assume b ≥ a. Recall the measures σa on G,

and let σ = p∗(σa × σb). We must show that σ ≤ KΣG.

Let Z ∈ G, and let l = l(·Z ·). If a ≤ b ≤ l − 1, then

σ(Z) ≤ Ke
a+b−l

2 e−ae−b = Ke−le−
a+b−l

2 .

(If l > a+ b+ 2, then σ(Z) = 0.)

If l − 1 ≤ b, then because there are at most Kea X’s in G for which

σa(X) > 0, we find

σ(Z) ≤ Keae−ae−b = Ke−le−(b−l).

Then we see that

1

K
σ ≤

bb+1c∑
k=bb−a−1c

e−(b−k)σk +

ba+b+3c∑
k=bbc

e−
(a+b−k)

2 σk,

so σ ≤ KΣG. �

We define a partial map proj : G →
.
Γ1,R as follows. Given A ∈ G, we

let γ = [A], and we let z ∈ γ be the projection of the base point ∗ to γ. As

always, the projection is defined by choosing lifts of ·A · and γ in H2 that have

the same endpoints. Then we project a lift of ∗ to the lift of γ, where the lift

of ∗ belongs to the lift of ·A ·. We let proj(A) = (γ, z).

Lemma 10.3. The map proj : G→
.
Γ1,R is K(S)-semirandom with respect

to ΣG and Σ .
Γ
.
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Proof. Let J be a unit interval on a curve γ ∈ Γ1,R. We have seen in

the two previous proofs that there are at most Ke
l−2R

2 many Z ∈ G for which

l(·Z ·) ≤ l, and proj(Z) ∈ J . Therefore, if σ ∈ ΣG, then

proj∗σ(γ, J) ≤ K
∞∑

k=b2Rc
e
k−2R

2 e−k ≤ Ke−2R,

and we are finished. �

Another standard map we consider is the projection map
.
Γ1,L → Γ1,L

given by (γ, x)→ γ. This map is clearly 1-semirandom. Going in the opposite

direction, we have the map γ → (γ, x) that assigns to γ ∈ Γ1,R a random point

x ∈ γ. This map is really defined as a map M(Γ1,R) → M(
.
Γ1,R), and we

observe that it is 1-semirandom as well.

Remark. We also observe that for T ∈ G, the map {1} → G defined by

1→ T is el(·T ·)-semirandom with respect to the unit measure on {1} and ΣG.

The principles of randomization. After almost every lemma or theorem we

prove in Sections 4–9, we have added a “Randomization remark” that considers

the functions we have implicitly defined, states their domain and range, and

argues that the functions are semirandom with respect to a certain measure

class. In the remarks we have followed the following principles:

1. When we write “a random element” (of a finite set S) that the reader

was previously told to read as “an arbitrary element,” we now mean “the

random element” of RS, namely,

1

|S|
∑
x∈S

x.

If a ∈ RS ⊂M(S) andM is a measure class on S, we say that a is a K-semi-

random element of S, with respect to M, if there exists µ ∈ M such that

a ≤ Kµ.

2. We can replace at will any map f : X → Y (or f : X → RY ) by the

linear extension f : RX → RY . This can cause confusion if you think about it

the wrong way, so we offer the following example to clarify what is going on.

In the hard case of the GSL, we take a random third connection (meaning

the random third connection) and then cancel out one square (Aij), i, j = 0, 1,

of boundaries to get a formal sum of squares (Bij) of curves. We then find for

each new square (in the formal sum) a second third connection at random from

a set depending on (Bij) to complete the argument. The right way to think

of the randomization (and linearization) is that the first operation defines a

partial map

q1 :
Ä....

Γ 1,R

ä4 → R
Ä....

Γ 1,R

ä4
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and the second operation defines

g0 : Γ4
1,R → RΠ1,R,

so we can write g0 ◦ q1 by extending g0 to a map from RΓ4
1,R to RΠ1,R linearly.

The danger is that one may try to imagine g0 acting on a formal sum of curves

by taking the random element from RConnε,R(· , ·).
So we will imagine that we are defining functions from X to Y , or from

X to RY , and only think of them as functions from RX to RY when we want

to compose them.

3. We want to use the measure class ΣG × ΣG = Σ×2
G on G2 = {(X,Y )}

when we want to form the product XY . We want to use the measure class

ΣG�ΣG = Σ�2
G on G2 if we want to be able to let X = Z and Y = Z for some

Z ∈ G.

For example, for the ASL, we use the measure class Σ�2
G × ΣG × Σ�2

G

× ΣG on six-tuples (A0, A1, U,B0, B1, V ) in G6 = G2 × G × G2 × G. This is

basically the largest measure class for which the maps πij : G6 → G4 defined

by πij(A0, A1, U,B0, B1, V ) = (Ai, U,Bj , V ) are 1-semirandom with respect to

the measure class Σ×4
G on G4.

This is exactly what we want, because we have to form the words AiUBjV ,

but we need the freedom to assign to A0 and A1 (or B0 and B1) the same value.

11. Appendix 2

We develop the theory of equidistribution and counting, based on the

uniformly exponential mixing of the geodesic flow, that we need to prove The-

orem 3.2.

11.1. Left and right actions. The group PSL(2,R) acts on the unit tan-

gent bundle T 1H2 on the left. (We refer to this action as the action by isome-

tries.) Namely, if v ∈ T 1H2 and h ∈ PSL(2,R), then h · v = h(v) is the

resulting vector in T 1H2. Moreover, if u and v are two vectors in T 1H2, then

there exists a unique element h ∈ PSL(2,R) such that h · v = u. This enables

us to identify the unit tangent bundle T 1H2 with PSL(2,R) as follows. Choose

a vector v0 ∈ T 1H2. We identify v0 with the identity element 1 in PSL(2,R).

A vector v ∈ T 1H2 is identified with the unique element h ∈ PSL(2,R) so that

h · v0 = v.

The existence and uniqueness of this h means that we can define a right

action of PSL(2,R) on T 1H2 by the equation (h · v0) · g = hg · v0. This right

action is the unique right action that satisfies the following two properties:

(i) h · v0 = v0 · h;

(ii) g · (v · h) = (g · v) · h
for any h, g ∈ PSL(2,R).
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v0 · Ya · gt

v0 · Ya
pq

α
β

p0

v0

v = v0 · Ya · gt ·Rc

Figure 7. The Factorisation Lemma

By an instruction we mean any transformation q : T 1H2 → T 1H2 that is

natural in the sense that

q(g · v) = g · q(v)

for any g ∈ PSL(2,R). For example, the time t geodesic flow gt and coun-

terclockwise rotation by angle t (which we denote by Rt) are instructions. It

follows from the previous paragraph that the instructions are exactly the maps

of the form q(v) = v · h for some h ∈ PSL(2,R).

We define the instruction Yt by

Yt = R−π
2
· gt ·Rπ

2
,

so Yt is the “rightward normal flow,” one rotates to the right for 90 degrees,

then flows for the time t, and then rotates to the left for 90 degrees.

Lemma 11.1. Any h∈PSL(2,R) can be uniquely written as h=Ya · gt ·Rc,
for some choice of a, t, c ∈ R.

Proof. We let v = v0 ·h; we want to find a, b and c such that v = Ya ·gt ·Rc.
Let p0 and p be the base points of v0 and v. We let α be the geodesic

through p0 orthogonal to v0 (oriented to point to the right), and we let q be

the closest point on α to p. Then, as shown in the Figure 11.1,

• we let a be the signed distance from p0 to q;

• we let β be the oriented geodesic through v0 · Ya, and let t be the signed

distance along β from q to p;

• we let c be the counter clockwise angle from v0 · Ya · gt to v.

Then we have v = v0 · Ya · gt ·Rc. �

We equip PSL(2,R) with the following distance function. Let hj ∈
PSL(2,R), j = 1, 2, and let vj ∈ T 1H2 denote the vectors corresponding

to hj . (The vector vj is based at the point pj ∈ H2.) We let

dPSL(2,R)(h1, h2) = d(p1, p2) + Θ(u1, v2),
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where u1 ∈ T 1H2 is the parallel transport of the vector v1 at the point p2.

(Recall that Θ(u, v) is the unoriented angle between vectors u and v.) For

h ∈ PSL(2,R), we denote by ||h|| the distance between h and the identity

element 1 ∈ PSL(2,R).

We leave the proof of the following lemma to the reader.

Lemma 11.2. There are universal constants δ0,K0 > 0 such that provid-

ing ||h|| ≤ δ0, then

h · gt = Ya · gt+b ·Rc,
where |a|+ |b|+ |c| ≤ K0||h||.

We now discuss the equidistribution of the equidistant lines on a closed

Riemann surface S. Let α : R → S be a unit speed geodesic, and let α̂ : R →
T 1S be the leftward normal unit vector field, given by α̂(s) = iα′(s). (Here i

denotes the imaginary unit in the tangent space to S at the point α(s) ∈ S.)

Let t ∈ R, and consider the vector field gt(α̂). Then the vectors from the field

gt(α̂) are orthogonal to the line that is equidistant (at distance t) from the

geodesic α.

We let dV be the volume form on T 1S, normalised so that∫
T 1S

dV = 1.

The following theorem provides explicit estimates for how evenly dis-

tributed gt(α̂) is in T 1S.

Theorem 11.1. Let f : T 1S → R be any C1 function. Then for a ≥
C1e

−qt, we have∣∣∣∣∣1a
a∫

0

f(gt(α̂(s))) ds−
∫
T 1S

f dV

∣∣∣∣∣ ≤ C2e
−qt

5

Å
1

a
+ ||f ||C1

ã
,

where the positive constants C1, C2 and q depend only on S.

Proof. We let ψη : PSL(2,R)→ [0,∞) be such that

(i) ψη is supported in Bη(1), which is the ball of radius η centered at 1;

(ii)
∫
ψη = 1, where we integrate with respect to the Haar measure on

PSL(2,R);

(iii) ||ψη||C1 ≤ K1η
−4 for some universal constant K1.

(iv) ψη(X) = ψη(X
−1) for X ∈ PSL(2,R).

We can arrange that (iii) holds because ψη needs to reach the height of

η−3 in a space of size η (so the derivative of ψη is proportional to η−4). For

simplicity, we let ψ = ψη.

If u, v ∈ T 1H2, then there is a unique g ∈ PSL(2,R) such that u · g = v.

We let ψ(u, v) = ψ(g). (Condition (iv) above implies that ψ(u, v) = ψ(v, u).)
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Then for a < b and X ∈ T 1S, we let

α̂a,b(X) =

b∫
a

ψ(α̂(s), X) ds,

and we let α̂a = α̂0,a.

Then

||α̂a,b||C1 ≤ (b− a)||ψ||C1

and ∫
T 1S

α̂a,b dV = b− a.

Applying the factorization lemma above (Lemma 11.2), we find that∫
T 1S

f(X)α̂a(g−tX) dV (X) =

a∫
0

∫
Bη(1)

f(α̂(s) · h · gt)ψ(h) ds dV (h)

=

a∫
0

∫
Bη(1)

f(α̂(s) · Ya · gt+b ·Rc)ψ(h) ds dV (h)

=

a∫
0

∫
Bη(1)

f(α̂(s+ a(t, h)) · gt+b(t,h) ·Rc(t,h))ψ(h) ds dV (h)

=

a∫
0

∫
Bη(1)

f(α̂(s+ a(t, h))ψ(h) ds dV (h) +O
Ä
||f ||C1ηa

ä
,

where the last equality follows from the upper bounds on b(t, h) and c(t, h)

from Lemma 11.2. This yields the inequalities

a−K0η∫
K0η

f(gt(α̂(s)) ds−K0||f ||C1η ≤
∫
T 1S

f(X)α̂a(g−tX) dV (X)

≤
a+K0η∫
−K0η

f(gt(α̂(s)) ds+K0||f ||C1η.

On the other hand, by exponential mixing,∣∣∣∣∣∣∣
∫
T 1S

((gt)∗α̂a)(X)f(X) dV (X)−
∫
T 1S

α̂a dV

∫
T 1S

f dV

∣∣∣∣∣∣∣
≤ Ce−qt||α̂a||C1 ||f ||C1 ≤ Ce−qtaη−4||f ||C1 ,
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where C, q > 0 depend only on S. So we obtain, for a > 2K0η,
a∫

0

f(gt(α̂(s))) ds ≤
∫
T 1S

f((gt)∗α̂−K0η,a+K0η) dV +K0||f ||C1η

≤ (a+ 2K0η)

∫
T 1S

f dV + Ce−qtaη−4||f ||C1 +K0η||f ||C1

and likewise
a∫

0

f(gt(α̂(s))) ds ≥ (a− 2K0η)

∫
T 1S

f dV − (Ce−qtaη−4 +K0η)||f ||C1 .

Letting η = e−
1
5
qt, the theorem follows. �

11.2. Counting good connections. Let β be another geodesic on S, and

define β̂ : R→ T 1S in analogy to α̂. For intervals I and J in R, we let

MI,J = {gt(β̂(s)) : (s, t) ∈ I × J}

be a 2-submanifold of T 1S.

For J = [0, j1], MI,J is the result of flowing out the normal field to β̂(s)

for time j1 along the geodesic flow.

We let Y be the vector field associated to the rightward normal flow on

T 1S so that the time t flow by Y is equal to the instruction Yt on T 1S. Then

α̂′(s) = Y (α̂(s)) for any geodesic α : R→ T 1S. We let

Y t ≡ 1

cosh t
(gt)∗Y,

so
∂

∂s

Ä
gt(α̂(s))

ä
= (cosh t)Y t(gt(α̂(s))).

Then Y t is the unit speed rightward flow along normal fields to curves

that are distance t from the geodesic, where the normal field points away from

the geodesic. For t large, Y t is close to the negative horocyclic flow.

The following theorem provides a precise estimate on the weighted number

of times that the equidistant curve gt(α(s)) (which is also a flow curve along Y t)

intersects the 2-manifold MI,J .

Theorem 11.2. Let f be a C1 function with compact support on MI,J .

Then ∣∣∣∣∣ 1

a cosh t

∑
gt(α̂(s))∈MI,J

s∈[0,a]

f(gt(α̂(s)))−
∫

MI,J

f ιY tdV

∣∣∣∣∣
≤ Ce

−qt
5

Å
1

a
+ ||f ||C1

ã
,
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provided that J = [j0, j1], where |I|, |j0|, |j1| < δ, t ≥ 1, and 1 ≥ a ≥ C1e
−qt,

where C,C1, δ > 0 depend only on S and ||f ||∞ ≤ 1. (Here ιY tdV is the

contraction of the volume form dV by the vector Y t.)

Proof. The assumptions on MI,J , t and a imply that the map Q : MI,J ×
(0, ε) → T 1S, defined by Q(q, r, s) = Y t

s

Ä
gr(β̂(q))

ä
, is injective for some ε =

ε(S). We let ψ be a C1 bump function on (0, ε), and we let f̃ : Q
Ä
MI,J×(0, ε)

ä
→ R be defined by

f̃
Ä
Q(q, r, s)

ä
= f(gr(β̃(q)))ψ(s).

Then

||f̃ ||C1 ≤ C(S)||f ||C1

and ∫
T 1S

f̃ dV =

∫
M

f ιY tdV.

Moreover,∣∣∣∣∣ ∑
gt(α̂(s))∈MI,J

s∈[0,a]

f(gt(α̂(s)))− cosh t

a∫
0

f̃(gt(α̂(s))) ds

∣∣∣∣∣ ≤ ||f ||∞.
This inequality holds because every time the curve Ys

Ä
gt(α̂(0))

ä
(for s ∈

[0, cosh t]) crosses MI,J , it goes through Q (and contributes the same amount

to the sum and the integral), except that the curve may start in Q and miss

MI,J , and the terminal point may end in Q, contributing more to the sum than

to the integral. For both endpoints, the error is at most |f ||∞, and the error

has different signs at the two endpoints, so the total error is at most ||f ||∞.

Therefore, by Theorem 11.1,∣∣∣∣∣ 1

a cosh t

∑
gt(α̂(s))∈MI,J

s∈[0,a]

f(gt(α̂(s)))−
∫

MI,J

f ιY tdV

∣∣∣∣∣
≤ 1

a cosh t
||f ||∞ + Ce

−qt
5

Å
1

a
+ ||f ||C1

ã
≤ Ce

−qt
5

Å
1

a
+ ||f ||C1

ã
. �

If α and β are two geodesic segments, and ε, L > 0, we let Connε,L(α, β)

be the set of (r, s, t) such that gt(α̂(r)) = β̂(s) and t ∈ [L,L+ ε].

The following theorem, which is the object of this appendix, provides an

estimate for the number of orthogeodesic connections, with length between L

and L + δ2, between two geodesic segments, where the length of the geodesic
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segments, the interval length δ2, and the proportional error to the count are

all exponentially small in L.

Theorem 11.3. Letting δ = e−
qL
40 , and α, β geodesic segments of length

δ2, the number of orthogeodesics connections from one side of α to one side of

β, of length in the interval [L,L+ δ2], is given by

1

8π2χ(S)
δ6eL

Ä
1 +O(δ)

ä
,

where the big O constant depends only on S.

Proof. We let M = MI,J , where I = [0, δ2] and J = [−δ2, 0]. We want to

count the number of s ∈ [0, δ2] for which gL(α̂(s)) ∈M .

Let

M+ = M[−δ3,δ2+δ3],[−δ2−δ3,δ3]

be a slightly larger surface, and let f+ be a C1 function on M+ that is equal

to 1 on M . We can arrange

||f+||C1 ≤ 10δ−3,

and f+ takes values in [0, 1].

Then ∫
M+

∣∣∣f+ − χM
∣∣∣ ιY LdV ≤ 10δ5,

and given our normalization of the Liouville volume form dV , we have∫
M

ιY LdV =
1

4π2|χ(S)|
δ4 +O(δ8).

Putting all this together and applying Theorem 11.2, we have

1

δ2 coshL
#Connε,L(α, β) ≤ 1

δ2 coshL

∑
gL(α̂(s))∈M+

s∈[0,a]

f+
Ä
gL(α̂(s))

ä
≤
∫
M+

f+ ιY LdV + Cδ8
Ä1

a
+ ||f ||C1

ä
≤ δ4

4π2|χ(S)|
+O(δ8) + 10δ5 + Cδ8(δ−2 + δ−3)

≤ δ4

4π2|χ(S)|
+ Cδ5.

We can analogously define f− supported on M , with f− ≡ 1 on

M− ≡M[δ3,δ2−δ3],[−δ2+δ3,−δ3]
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and prove that

1

δ2 coshL
#Connε,L(α, β) ≥ δ4

4π2|χ(S)|
− Cδ5.

Since coshL = eL

2

Ä
1 +O(e−2L)

ä
, the theorem follows. �
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