How do Cusped Surfaces Wear Pants?

Colin Fan, Saket Shah, Kai Shaikh

DIMACS

June 1, 2020

Advisor: Alex Kontorovich (Rutgers)

Work supported by Rutgers Department of Mathematics and NSF DMS-1802119

 The uniformization theorem says that all (connected Riemann) surfaces of genus g > 1 have 𝔅 = {z ∈ 𝔅 : 𝔅(z) > 0} as a universal covering space.

- The uniformization theorem says that all (connected Riemann) surfaces of genus g > 1 have 𝔅 = {z ∈ 𝔅 : 𝔅(z) > 0} as a universal covering space.
- This cover does not necessarily appear as a finite cover for the surface. So, what can be said about existence of finite coverings?

Hyperbolic Space

¹

 $^{^{1} {\}rm image\ from\ https://thatsmaths.files.wordpress.com/2013/10/halfplane1.jpg}$

A Covering

/finite cover 6 Model surface

2

 $^{^{2} \}ensuremath{\mathsf{image}}$ from Jeremy Kahn's lecture notes on the Ehrenpreis conjecture

• Conjecture (Ehrenpreis): Given any two compact (Riemann) surfaces of genus g > 1, there exists finite covers which are "almost the same."

- Conjecture (Ehrenpreis): Given any two compact (Riemann) surfaces of genus g > 1, there exists finite covers which are "almost the same."
- The Ehrenpreis conjecture was proven true by Jeremy Kahn and Vladimir Markovic in 2011 using immersed pairs of pants to construct covers.

- Conjecture (Ehrenpreis): Given any two compact (Riemann) surfaces of genus g > 1, there exists finite covers which are "almost the same."
- The Ehrenpreis conjecture was proven true by Jeremy Kahn and Vladimir Markovic in 2011 using immersed pairs of pants to construct covers.
- What can be said about surfaces with cusps?

- Conjecture (Ehrenpreis): Given any two compact (Riemann) surfaces of genus g > 1, there exists finite covers which are "almost the same."
- The Ehrenpreis conjecture was proven true by Jeremy Kahn and Vladimir Markovic in 2011 using immersed pairs of pants to construct covers.
- What can be said about surfaces with cusps?
- Conjecture: Given any two cusped (Riemann) surfaces of genus g > 1, there exists finite covers which are "almost the same."

3

 3 image from Wikipedia page "Pair of pants (mathematics)"

Pair of Pants Decomposition

4

⁴image from Wikipedia page "Pair of pants (mathematics)"

Immersions of Pants

 $^{^{5}}_{\ }$ image from Jeremy Kahn's lecture notes on the Ehrenpreis conjecture

Project Goals

• End goal: A proof of the Ehrenpreis conjecture for the cusped case.

 $^{^{6}} image \ from \ https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,Z).pdf$

Project Goals

- End goal: A proof of the Ehrenpreis conjecture for the cusped case.
- To start off, we need to understand immersions of pants and pants decompositions and examples for some model spaces.

 $^{^{6}} image \ from \ https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,Z).pdf$

Project Goals

- End goal: A proof of the Ehrenpreis conjecture for the cusped case.
- To start off, we need to understand immersions of pants and pants decompositions and examples for some model spaces.
- First space to consider: The fundamental domain of \mathbb{H} over PSL $(2,\mathbb{Z}) = SL(2,\mathbb{Z}) / \{\pm I\}$. How do we put pants on it?

6

oimage from https://kconrad.math.uconn.edu/blurbs/grouptheory/SL(2,Z).pdf