Some Generalizations of the Maslov Index

Kenneth Blakey

Brown University

June 1, 2021

Prepared While Participating at DIMACS REU 2021

Kenneth Blakey (Brown University) Some Generalizations of the Maslov Index

June 1, 2021 1/18

This is a brief overview of the material needed to define a version of the Maslov index. This will be used in following presentations. The following can be found in [1], [2] and is followed closely. The author makes no claims of originality.

Smooth Vector Bundles

Let M be a smooth n-manifold.

Definition

A (real, smooth) vector bundle of rank k over M is a smooth manifold E with a smooth map $E \xrightarrow{\pi} M$ such that:

- All fibers E_p are real k-vector spaces,
- ② For $p \in M$ there exists a neighborhood U and a diffeomorphism $\pi^{-1}(U) \xrightarrow{\Phi} U \times \mathbb{R}^k \text{ such that:} \leftarrow constant here exists a neighborhood U and a diffeomorphism$
 - $\pi_U \circ \Phi = \pi$,
 - For each $q \in U$ the restriction Φ to E_q is a vector space isomorphism $E_q \to \{q\} \times \mathbb{R}^k \cong \mathbb{R}^k$.

TT can be shown to be a smooth submersion

Think of the tangent or cotangent bundles of M!

Symplectic Vector Bundle

Let $E \xrightarrow{\pi} M$ be a vector bundle.

Definition

E is a **symplectic vector bundle** if there exists a family of symplectic forms

$$E_p imes E_p \xrightarrow{\omega_p} \mathbb{R}$$

These fit together to give an $\omega \in \Gamma(E^* \wedge E^*)$ that is non-degenerate.

Again, think of the tangent bundle of a symplectic manifold M!

(1)

Vector Bundle Constructions

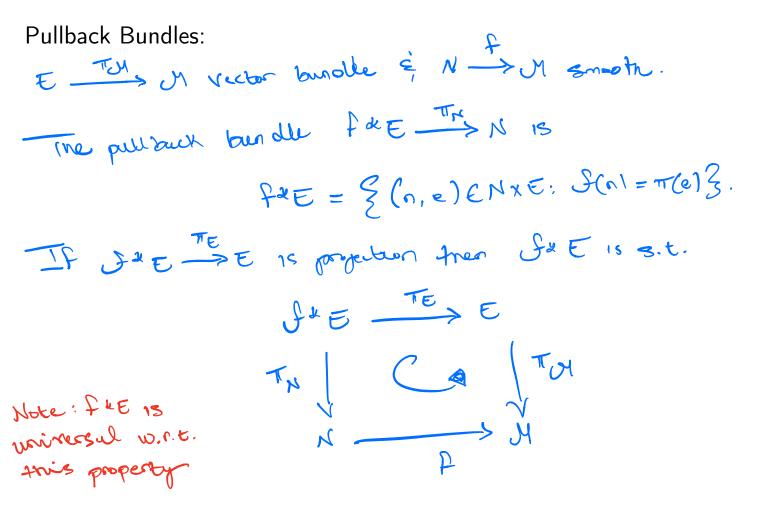
Subbundles:

If $E \xrightarrow{\pi} M$, $B \xrightarrow{\pi} M$ are rector subsless then B is a subbundle of E if: $i | B \subset E$ combedded submanifold $hi | S_p = B \cap E_p$ is the rector spile structure $uni | T' = \pi I_B$

Lagrangian Subbundles:

$$E \longrightarrow \mathcal{M}$$
 symplectic bundle $e'_{e} \otimes \mathcal{M}$ subbundle then
S & Lugrungian $iF:$
 $S_{p} \subset E_{p}$ Lagrungian $\forall p$.

Vector Bundle Constructions Cont.



Lemma

A symplectic vector bundle E over a compact oriented 2-manifold Σ with non-empty boundary $\partial \Sigma$ has a symplectic trivialization.

What is meant by a symplectic trivialization?

I global trivialization s.t. the induced isomorphisms

$$E_p \cong R^{2n}$$

are actually linear symphetomorphisms
 $(E_p, w_p) \cong (R^{2n}, w_-).$

Maslov Index

Let $(\mathbb{R}^{2n}, \omega_0)$ be the standard symplectic space. Consider the Lagrangian Grassmanian:

$$\Lambda(n) = \{ V : V \subset \mathbb{R}^{2n} \text{ is Lagrangian} \}.$$
(2)

Consider $\mathbb{C}^n \cong \mathbb{R}^{2n}$ under the standard identification. It can be shown any $V \in \Lambda(n)$ can be written as $A \cdot \mathbb{R}^n$ for $A \in U(n)$. Clearly $A \cdot \mathbb{R}^n = \mathbb{R}^n$ if and only if $A \in O(n)$. Hence

$$\Lambda(n) \cong U(n)/O(n). \tag{3}$$

Definition

For a loop $S^1 \xrightarrow{\gamma} \Lambda(n)$ we define the **Maslov index** as

$$\mu(\gamma) = \mathsf{deg}[(\mathsf{det})^2 \circ \gamma].$$

A real subspace $V \subset \mathbb{C}^n$ is totally real if $V \cap iV = \{0\}$ and dim_{\mathbb{R}} V = n. Let $\mathcal{R}(n)$ be the set of totally real subspaces.

It can be shown any such V can be written $V = A \cdot \mathbb{R}^n$ for some $A \in GL(n, \mathbb{C})$. Also $A_1 \mathbb{R}^n = A_2 \mathbb{R}^n$ if and only if $A_2^{-1} A_1 \in GL(n, \mathbb{R})$. Hence

$$\mathcal{R}(n) \cong GL(n,\mathbb{C})/GL(n,\mathbb{R}).$$
 (5)

Generalizing The Maslov Index

Lemma

Let

$$\tilde{\mathcal{R}}(n) = \{ D \in GL(n, \mathbb{C}) : D\overline{D} = I_n \}.$$
(6)

Then

$$\mathcal{R}(n) \xrightarrow{B} \tilde{\mathcal{R}}(n) : A \cdot \mathbb{R}^n \mapsto A^{-1}\overline{A}$$
 (7)

is a diffeomorphism with respect to the standard smooth structures.

Corollary

Let $\tilde{\Lambda}(n) = B(\Lambda(n))$, or equivalently,

$$\tilde{\Lambda}(n) = \{ D \in U(n) : D = D^t \}.$$

Then $B|_{\Lambda(n)}$ is a diffeomorphism.

June 1, 2021 11 / 18

(8)

This is a generalization of the Maslov index to loops through totally real subspaces:

Definition

Let $S^1 \xrightarrow{\gamma} \mathcal{R}(n)$ be a loop. The **generalized Maslov index** $\mu(\gamma)$ is the winding number of

$$\det \circ B \circ \gamma : S^1 \to \mathbb{C} - \{0\}$$
(9)

Let Σ be a oriented compact surface with boundary $\partial \Sigma$ and *h* the number of connection components of $\partial \Sigma$.

Definition

A symplectic bundle pair is a pair (\mathcal{V}, λ) over $(\Sigma, \partial \Sigma)$ where $\mathcal{V} \to \Sigma$ is a symplectic bundle and $\lambda \to \partial \Sigma$ is a Lagrangian subbundle of $\mathcal{V}|_{\partial \Sigma}$.

Fix a trivialization $\mathcal{V} \xrightarrow{\Psi} \Sigma \times (\mathbb{R}^{2n}, \omega_0)$. Then the restriction $\Psi(\lambda|_{\partial_i \Sigma})$ gives a loop

$$S^1 \xrightarrow{\gamma'_{\Psi,\lambda}} \Lambda(n).$$
 (10)

How do we get the loop?

Since Zi compact => 2 Z is compact. Since Qui Si is connected component => Qui Si C QSi closed => Di Si is comput. So Di I is comput 1-manifold vo o boundary. Hence differnarphic to a crate. let S' - Z Jie Z a quarretrization. Then define $\mathcal{F}_{\psi, \lambda}^{ii}(t) = \Psi(\lambda)_{2(t)}$

Maslov Index of (\mathcal{V}, λ)

Let
$$\mu(\Psi, \partial_i \Sigma) = \mu(\gamma_{\Psi, \lambda}^i).$$

Definition

The Maslov index of the symplectic bundle pair (\mathcal{V}, λ) is

$$\mu(\mathcal{V},\lambda) = \sum_{i=1}^{h} \mu(\Psi,\partial_i \Sigma).$$
(11)

See in [2] for prof that
$$\mathcal{H}(\mathcal{V}, \lambda)$$
 is
independent of trivialization NP.

Maslov Index of a Smooth Map $(\Sigma, \partial \Sigma) \xrightarrow{f} (M, L)$

Suppose we have a smooth map $(\Sigma, \partial \Sigma) \xrightarrow{f} (M, L)$ such that M is symplectic and $L \subset M$ is Lagrangian. We now have a symplectic bundle pair

$$(f^*TM, f^*|_{\partial \Sigma}TL) \tag{12}$$

associated to $(\Sigma, \partial \Sigma)$.

Definition

The Maslov index of f is

$$\mu_L(f) = \mu(f^* TM, f^*|_{\partial \Sigma} TL).$$
(13)

We note $\mu_L(f)$ is invariant under homotopy of f.

- D. McDuff and D. Salamon. Introduction to Symplectic Topology. New York: Oxford University Press, 1995.
- [2] K. Fukaya [et al.] Lagrangian Intersection Floer Theory. AMS/IP Studies in Advanced Mathematics, 2009.

Work supported by the Rutgers Department of Mathematics, NSF grant DMS-1711070, and the DIMACS REU program.