Intuitive Intro to Floer Cohomology

Kenneth Blakey

Brown University

June 3, 2021

Prepared While Participating at DIMACS REU 2021

This is an intuitive introduction to Lagrangian intersection Floer cohomology. The following can be found in [1], [2] and is followed closely. The author makes no claims of originality.

1 The Action Functional

2 The L^2 -Gradient Equation

3 Floer Cohomology

Let (L_0, L_1) be a pair of compact and connected Lagrangian submanifolds of (M, ω) . We define the functional

$$\tilde{\Omega}(L_0, L_1; \ell_0) \xrightarrow{\mathcal{A}} \mathbb{R}$$
(1)
$$\mathcal{A}[\mathcal{L}_1, \omega] = \int \omega \times \omega$$

$$\Rightarrow \text{ the contricul points will be intersection points of (L_0, L_1)

$$\Rightarrow \text{ the gradient flow lines will be strips connecting}$$

$$\text{ the intersection points}$$$$

Let $\tilde{\Omega}(L_0, L_1; \ell_0) \xrightarrow{\pi} \Omega(L_0, L_1; \ell_0)$ be the Γ -covering projection. Then

$$d\mathcal{A} = -\pi^* \alpha. \tag{2}$$

In particular, this shows that

the critical ponts Cr (20,2, i lo) will be

Let $\{J_t\}_{t=0}^1$ be a family of almost complex structures on M tamed by ω . Define the metric on $\Omega(L_0, L_1; \ell_0)$ by

$$\langle \xi_1, \xi_2 \rangle_{J_t} = \int_0^1 \omega(\xi_1(t), J_t \xi_2(t)) dt.$$
 (3)

The gradient equation is then

$$(*) \begin{cases} \frac{du}{d\tau} + \frac{\partial t}{\partial t} \frac{du}{d\tau} = 0 \\ u(\tau, 0) \in L_{0}, \quad u(\tau, 1) \in L_{1} \end{cases} \qquad \text{where} \quad u(\tau, 0) \in L_{0}, \quad u(\tau, 1) \in L_{1} \end{cases}$$

Bounded Solutions

Since RX [01] IS not compact, we need a "decury" Condition on U satisfying (*). Let Marg = Eu: U satisfus (*) & Ju* w R ~ Z Cur then show if we grover & Lo ML, , I! pigeLond, s.t. $\frac{\mathrm{desymptotic}}{\mathrm{Condition}} \xrightarrow{\mathrm{Zim}} u(\tau_i, \cdot) = u_p, \quad \lim_{\tau \to -\infty} u(\tau_i, \cdot) = u_2.$

Note: There is a natural R-adon on T. Let M^{rar} - M^{rag} / R

Floer Cohomology

We can Surther decompose Utry up to homobopy. Let TZ (pig) be set of homotopy chases of [011] ~ M St. Uloit1 = p Ulgiole Lo ulinel=q ulsin) EL, . Let Meg (p.g.; B) he tre set of a satisfying (K), asymptotic condition, and [u]=BE TZ (p.g). Write Mong (quai Euz) = Money (quai Euz)/

as before.

Finally, we need a way to index the pants. We use the Master-Viterbo index M(PIL; EUZ). See [2].

Floer Cohomology Cont.

Floer Cohomology Cont.

For concomple, Florer showed for L A N, H(L) w/ NH(t) a Humiltonian differencerphism & if $T_2(M, L) = \frac{2}{2}e^2$ then I ZJzZ St. we can define Froer conomology. In Just, under from conditions, it is isomorphic to the Morse Humology of L.

- D. McDuff and D. Salamon. Introduction to Symplectic Topology. New York: Oxford University Press, 1995.
- [2] K. Fukaya [et al.] *Lagrangian Intersection Floer Theory*. AMS/IP Studies in Advanced Mathematics, 2009.

Work supported by the Rutgers Department of Mathematics, NSF grant DMS-1711070, and the DIMACS REU program.