Synchronization in Modular Multilayer Networks 2017 DIMACS REU

Kayla Cummings Pomona College

Mentors: Dr. L. Gallos, Dr. R. Wright DIMACS, Rutgers University

July 14, 2017

Kayla Cummings Synchronization

Outline

- 1 Kuramoto model
- 2 Modular networks
- **3** Two-layer networks
- 4 Future steps

Kayla Cummings Synchronization

Simple Kuramoto Model

Can be solved directly:

$$rac{d heta_i}{dt} = \omega_i + rac{\kappa}{N} \sum_{j=1}^N \sin(heta_j - heta_i) \quad (i = 1, \dots, N)$$

 \downarrow

$$rac{d heta_i}{dt} = \omega_i + Kr\sin(\phi - heta_i) \quad (i = 1, \dots, N)$$

with $re^{i\phi} = rac{1}{N}\sum_{j=1}^N e^{i heta_j}$

Kayla Cummings

Synchronization

Simple Kuramoto Model

Figure 1: Visualization of Phase Locking for Different Coupling Strengths

"Kuramoto model," Wikipedia. Web. Accessed 2 June 2017. https://en.wikipedia.org/wiki/Kuramoto_model

Kayla Cummings Synchronization

Modified Kuramoto Model

Must be solved analytically:

$$rac{d heta_i}{dt} = \omega_i + rac{\mathcal{K}}{\deg(i)} \sum_{j=1}^N a_{ij} \sin(heta_j - heta_i)$$
 \downarrow

$$heta_i(t+h) \leftarrow heta_i(t) + h \cdot \left(\omega_i + rac{\kappa}{\deg(i)} \sum_{j=1}^N a_{ij} \sin(\theta_j - \theta_i)\right)$$

. .

Kayla Cummings Synchronization

Modular networks

Figure 2: $\alpha = 30, m = 3, N = 150$

 $\begin{array}{l} \alpha \text{: modularity strength} \\ m \text{: number of modules} \\ k_{total} = 4 \text{: average node degree} \\ \downarrow \\ k_{inter}, k_{intra} \text{: average intermodular} \\ \text{ and intramodular degrees} \end{array}$

$$k_{total} = k_{inter} + k_{intra}$$
 $rac{k_{inter}}{k_{intra}} = rac{lpha}{m-1}$

Shekhtman, Shai, Havlin. New Journal of Physics 17.

Kayla Cummings Synchronization

Visualizing final phases: modularity strength (m = 20)

Kayla Cummings Synchronization

Heat maps: modularity strength

$$k_{ ext{total}} =$$
 4, $m =$ 20, $N pprox$ 10,000

Figure 3: Left: global synchronization. Right: modular synchronization.

Kayla	Cummings
Synch	ronization

Heat maps: modularity strength

$$k_{ ext{total}} =$$
 4, $m =$ 20, $N pprox$ 10,000

Figure 4: Left: global synchronization. Right: modular synchronization.

Kayla	Cummings
Synch	ronization

Visualizing final phases: number of modules ($\alpha = 1000$)

Node number

Kayla Cummings Synchronization

Heat maps: number of modules

$$k_{\mathsf{total}} = \mathsf{4}, lpha = \mathsf{1000}, \mathit{N} pprox \mathsf{10}, \mathsf{000}$$

Figure 5: Left: global synchronization. Right: modular synchronization.

Kayla	Cummings	
Synch	ronization	

Heat maps: number of modules

$$k_{\mathsf{total}} = \mathsf{4}, lpha = \mathsf{1000}, \mathit{N} pprox \mathsf{10}, \mathsf{000}$$

Figure 6: Left: global synchronization. Right: modular synchronization.

Kayla	Cummings	
Synch	ronization	

Phase diagram sketches: modularity and synchronization

Kayla Cummings Synchronization

Conclusions

These phase diagrams show us that module strength and quantity can severely impair global coherence in modular networks after synchronization. However, after a relatively stable coupling strength threshold, order still exists within modules.

Kayla Cummings Synchronization Two-layer modular networks

Next: heat maps showing effects of interlayer connectivity and interlayer coupling strength on global and modular synchronization in each layer and the entire network

Radicchi, F. "Driving Interconnected Networks to Supercriticality." Phys. Rev. X 4, 021014 (2014). 22 April 2014.

Kayla Cummings Synchronization

Next steps

- Finalize heat maps and phase diagrams for two-layer modular networks.
- 2 Learn about cool combinatorial mathematics in Prague!
- Investigate optimal modular topology for synchronization in two-layer networks.

Kayla Cummings Synchronization Acknowledgements

Thank you for listening!

- Thank you to Drs. Gallos and Wright for your mentorship.
- Work supported by NSF grants CCF-1559855 (DIMACS REU) and CNS-1646856 (EAGER initiative).

Kayla Cummings Synchronization