Peeling in graphs

Karel Tesař
Definition of peeling

- Peeling number of the vertex v is the number $\text{peel}(v)$ defined by the following process.
 1. $p = 0$
 2. Repeat
 1. While exists vertex v such that $\text{deg}(v) \leq p$
 1. $\text{peel}(v) = p$
 2. remove v
 2. $p = p + 1$
 3. End if no vertex remains
Properties

• Peeling numbers are unambiguous.
• Vertices of graph are divided into layers.
• These layers are sometimes called k-cores
• $\text{peel}(v) \leq \text{deg}(v)$...for every vertex v
• The maximal peeling number of a graph equals the degeneration of a graph.
Motivation of peeling

• Peel numbers are studied in large networks.
 – Internet network
 – Social network

• We want to determine the peel number of a given vertex online in a gradually evolving graph.
 – Our aim is to develop a data structure for this.
Data structure

• For a graph $G = (V, E)$ we want to regularly process the following queries.
 a) Initialize the structure by the graph G
 b) Add an edge (u, v) into G
 c) Delete an edge (u, v) from G
 d) Determine a peel number of a vertex v at the time t

• We want to achieve the best amortized time complexity for queries b), c), d) and the best time complexity for a one-time query a).
Characterization

• We want to characterize graphs which vertices all have the same peeling number. Lie in the same layer.

• We determine this class of graphs as GF_k
 – GF_1 is equivalent to trees
 – GF_2 is equivalent to ???
 – ...
 – GF_k is equivalent to ???
References
