Exact Lagrangian Fillings of Legendrian Surfaces

Prepared while participating in the 2023 DIMACS REU

Jemma Schroder

Massachusetts Institute of Technology

July 21, 2023
Overview

1. Contact Manifolds & Legendrian Submanifolds
2. Exact Lagrangian Fillings
3. What is Homology?
4. Filling $(\mathbb{S}^1)^n$
What is a Manifold?

A real manifold is any space that locally looks like \mathbb{R}^n. Similarly, a complex manifold is any space that locally looks like \mathbb{C}^n.

Manifolds

S^2, \mathbb{R}^2, $S^1 \times S^1$, $\mathbb{R}^1 \times \mathbb{R}^1$

Not Manifolds

\mathbb{R}^1, \mathbb{R}^2, \mathbb{C}^2
What is a Tangent bundle?

Let Z be an d-dimensional real manifold: so ‘zoomed in’ at every point of Z, we have a copy of \mathbb{R}^d. The tangent bundle TZ is given by ‘gluing’ all of these copies of \mathbb{R}^d together.
Contact Manifolds

Take Z^{2n+1} a smooth odd-dimensional manifold and TZ its tangent bundle.

Definition (Technical)

A contact structure A contact structure on Z is a maximally non-integrable hyperplane field $\xi = \ker \alpha \subset TZ$, where α is a differential 1–form.

A contact manifold is a pair (Z, ξ)

So, what does this even mean?
Example: Standard Contact form on \mathbb{R}^3

For example, take $M = \mathbb{R}^3$ (ie, $n = 1$) and $\alpha = dz - ydx$.

Figure: The standard contact structure on \mathbb{R}^3, from Wikimedia Commons.
Legendrian Submanifolds

Definition

A **Legendrian Submanifold** $\Lambda \subseteq M$ of a smooth $2n + 1$ dimensional contact manifold satisfies the following:

1. Λ is tangent to ξ: $T\Lambda_p \subseteq \xi_p$ for all $p \in \Lambda$ (*isotropic*)
2. $\dim \Lambda = n$ (*maximal*)

In other words, a Legendrian submanifold is a submanifold that is everywhere tangent to the hyperplane field $\xi = \ker \alpha$.
Ex. Legendrian Submanifolds of \mathbb{R}^3

(a) Legendrian Unknot

(b) Legendrian Right-handed trefoil

Figure: Legendrian Submanifolds of \mathbb{R}^3 endowed with the standard contact form $\alpha = dz - ydx$. From the Duke Gallery of Legendrian knots.
Exact Lagrangian Fillings

Let Λ_+ and Λ_- be Lagrangian submanifolds of $(\mathbb{R}^3, \ker \alpha)$.

Definition

An **Exact Lagrangian Cobordism** $\Sigma \subset (\mathbb{R} \times \mathbb{R}^3, d(e^t \alpha))$ is a 2-dimensional surface such that there exists a $T > 0$ such that:

1. Σ is cylindrical over Λ_+ in the interval (T, ∞):
 \[\Sigma \cap (T, \infty) \times \mathbb{R}^3 = (T, \infty) \times \Lambda_+, \]

2. Σ is cylindrical over Λ_- in the interval $(-\infty, -T)$:
 \[\Sigma \cap (-\infty, T) \times \mathbb{R}^3 = (-\infty, T) \times \Lambda_-, \]

3. Σ is compact in $[T, T] \times \mathbb{R}^3$,

4. $e^t \alpha |_{T\Sigma} = df$ for some function $f : \Sigma \to \mathbb{R}$.

Definition

If we can take $\Lambda_- = \emptyset$, then Σ is an Exact Lagrangian Filling of Λ_+.

Figure: An Exact Lagrangian Cobordism and an Exact Lagrangian Filling.
Example: $\Lambda = S^1 \subset S^3$

To find an exact Lagrangian filling of S^1, we can consider the disk D^2 embedded by the following ‘diagonal’ map:

$$u : D^2 \to \mathbb{Z}$$

$$z \mapsto (z, -z)$$

Figure: $S^1 \subset \mathbb{R}^3$
The question

Take Z^{2n+1} a circle-bundle over $\Lambda = (S^1)^n$. For which n do there not exist some exact Lagrangian filling L?
What is Homology

Homology is a way of reframing questions in topology as questions in algebra. *Disclaimer: the information presented in this section is not necessarily technically accurate; it is merely to give intuition for what homology is.*

Topologists only care about holes. So we want a way of counting how many n-dimensional holes a space has. To do this, we’ll consider cycles and boundaries.
Cycles & Boundaries

1-cycles in the torus

If a cycle bounds a solid disk, it's a boundary
Homology = \{\text{Cycles that aren’t boundaries}\} / \{\text{cycles that are the same}\}

To compute the homology of a space, consider all possible cycles in it. Then, check if that cycle is the boundary of a disk. If it isn’t, then we’ve detected a hole!
Winding number

Any 1-cycle that isn’t a boundary can, up to continuous deformation, be completely characterized by how many times it loops around the green curve and how many times it loops around the red curve. Thus $H_1(S^1 \times S^1) = \mathbb{Z} \times \mathbb{Z}$.
Take \(\iota : \Lambda \to L \) to be the inclusion map, and consider its pullback in homology \(\iota^* : H(\Lambda) \to H(L) \).

Lemma (Adapted from Lem. 3.2.4 of WW22)

The image of \(H_1(\Lambda) \oplus H_{n-1}(\Lambda) \) in \(H_1(L) \oplus H_{n-1}(L) \) is half-dimensional.

Thus, we can disprove the existence of our filling \(L \) by considering the number of homology classes in \(\text{im}(H_1(\Lambda) \oplus H_{n-1}(\Lambda)) \). If this number is too high, \(L \) can’t exist!

Conjecture (to be proved (hopefully) soon)

For \(n > 2 \), \((S^1)^n \) admits no exact Lagrangian filling.
I’d like to thank my mentor Christopher Woodward for working with me this summer, as well as Dr. Yuhan Sun and Soham Chanda.

Thank you to DIMACS, Dr. Lazaros Gallos, and Caleb Fong for running a wonderful program.

Work supported by NSF award 2105417.

K. Blakley, S. Chanda, Y. Sun, and C. Woodward. “Augmentation varieties and disk potentials” *In preparation*