Exact Lagrangian Fillings of Legendrian Surfaces Prepared while participating in the 2023 DIMACS REU

Jemma Schroder

Massachusetts Institute of Technology

July 21, 2023

- Contact Manifolds & Legendrian Submanifolds
- e Exact Lagrangian Fillings
- What is Homology?
- Filling $(\mathbb{S}^1)^n$

What is a Manifold?

A real manifold is any space that locally looks like \mathbb{R}^n . Similarly, a complex manifold is any space that locally looks like \mathbb{C}^n .

What is a Tangent bundle?

Let Z be an d-dimensional real manifold: so 'zoomed in' at every point of Z, we have a copy of \mathbb{R}^d . The tangent bundle TZ is given by 'gluing' all of these copies of \mathbb{R}^d together.

Contact Manifolds

Take Z^{2n+1} a smooth odd-dimensional manifold and TZ its tangent bundle.

Definition (Technical)

A **contact structure** A contact structure on Z is a maximally non-integrable hyperplane field $\xi = \ker \alpha \subset TZ$, where α is a differential 1-form.

A contact manifold is a pair (Z,ξ)

So, what does this even mean?

Example: Standard Contact form on \mathbb{R}^3

For example, take $M = \mathbb{R}^3$ (ie, n = 1) and $\alpha = dz - ydx$.

Figure: The standard contact structure on \mathbb{R}^3 , from Wikimedia Commons.

Definition

A Legendrian Submanifold $\Lambda \subseteq M$ of a smooth 2n + 1 dimensional contact manifold satisfies the following:

- **1** A is tangent to ξ : $TA_p \subseteq \xi_p$ for all $p \in \Lambda$ *(isotropic)*
- **2** dim $\Lambda = n$ (maximal)

In other words, a Legendrian submanifold is a submanifold that is everywhere tangent to the hyperplane field $\xi = \ker \alpha$.

Ex. Legendrian Submanifolds of \mathbb{R}^3

(a) Legendrian Unknot

(b) Legendrian Right-handed trefoil

Figure: Legendrian Submanifolds of \mathbb{R}^3 endowed with the standard contact form $\alpha = dz - ydx$. From the Duke Gallary of Legendrian knots.

Exact Lagrangian Fillings

Let Λ_+ and Λ_- be Lagrangian submanifolds of $(\mathbb{R}^3, \ker \alpha)$.

Definition

An Exact Lagrangian Cobordism $\Sigma \subset (\mathbb{R} \times \mathbb{R}^3, d(e^t \alpha))$ is a 2-dimensional surface such that there exists a T > 0 such that:

() Σ is cylindrical over Λ_+ in the interval (T, ∞) :

$$\Sigma \cap (T,\infty) \times \mathbb{R}^3) = (T,\infty) \times \Lambda_+,$$

2 Σ is cylindrical over Λ_{-} in the interval $(-T, -\infty)$:

$$\Sigma \cap (-\infty, T) \times \mathbb{R}^3) = (-\infty, T) \times \Lambda_-,$$

Exact Lagrangian Fillings

Figure: An Exact Lagrangian Cobordism and an Exact Lagrangian Filling.

Definition

If we can take $\Lambda_{-} = \emptyset$, then Σ is an **Exact Lagrangian Filling** of Λ_{+} .

Example: $\Lambda = S^1 \subset S^3$

To find an exact Lagrangian filling of S^1 , we can consider the disk D^2 embedded by the following 'diagonal' map:

Figure: $S^1 \subset \mathbb{R}^3$

The question

Take Z^{2n+1} a circle-bundle over $\Lambda = (S^1)^n$. For which *n* do there not exist some exact Lagrangian filling *L*?

Homology is a way of reframing questions in topology as questions in algebra. *Disclaimer: the information presented in this section is not neccessarily technically accurate; it is merely to give intuition for what homology is.*

Topologists only care about holes. So we want a way of counting how many *n*-dimensional holes a space has. To do this, we'll consider cycles and boundaries.

Cycles & Boundaries

Homology = {Cycles that aren't boundaries}/{cycles that are the same}

To compute the homology of a space, consider all possible cycles in it. Then, check if that cycle is the boundary of a disk. If it isn't, then we've detected a hole!

Winding number

Any 1-cycle that isn't a boundary can, up to continuous deformation, be completely characterized by how many times it loops around the green curve and how many times it loops around the red curve. Thus $H_1(S^1 \times S^1) = \mathbb{Z} \times \mathbb{Z}$.

My Work

Take $\iota : \Lambda \to L$ to be the inclusion map, and consider its pullback in homology $\iota_* : H(\Lambda) \to H(L)$.

Lemma (Adapted from Lem. 3.2.4 of WW22)

The image of $H_1(\Lambda) \oplus H_{n-1}(\Lambda)$ in $H_1(L) \oplus H_{n-1}(L)$ is half-dimensional.

Thus, we can disprove the existence of our filling L by considering the number of homology classes in $\operatorname{im}(H_1(\Lambda) \oplus H_{n-1}(\Lambda))$. If this number is too high, L can't exist!

Conjecture (to be proved (hopefully) soon)

For n > 2, $(S^1)^n$ admits no exact Lagrangian filling.

- I'd like to thank my mentor Christopher Woodward for working with me this summer, as well as Dr. Yuhan Sun and Soham Chanda.
- Phank you to DIMACS, Dr. Lazaros Gallos, and Caleb Fong for running a wonderful program
- Solution Work supported by NSF award 2105417.

References

- [P17] Yu Pan. Exact Lagrangian fillings of Legendrian (2, n) torus links. Pacific J. Math., 289(2):417–441, 2017. arXiv:1607.03167, doi:10.2140/pjm.2017.289.417.
- Contact Manifolds Encyclopedia of Mathematical Physics, eds. J.-P. Françoise, G.L. Naber and S.T. Tsou, Oxford: Elsevier, v. 1 2006631–636.
- [*WW*22] K. Wehrheim and C. Woodard, "Floer Field Theory for Coprime Rank and Degree," *Indiana Univ. Math. J.* 69 (2020), no. 6, 2035–2088.
- K. Blakley, S. Chanda, Y. Sun, and C. Woodward. "Augmentation varieties and disk potentials" *In preparation*