Project: Classifying Exact Lagrangian Fillings of Legendrian Surfaces

Prepared while participating in the 2023 DIMACS REU

Jemma Schroder

Massachusetts Institute of Technology

June 5, 2023

- What is a Legendrian Surface?
- What is an Exact Lagrangian Filling?

The following can be found in [1] and [2], which are followed closely. The author makes no claims of originality.

Take M a smooth manifold and TM its tangent bundle.

Definition

A hyperplane field ξ is a codimension 1 subbundle of *TM*.

Locally, ξ can be described as $\ker\alpha$ where α is a differential 1-form.

Definition

A contact structure on a 2n + 1 dimensional manifold M is a maximally non-integrable hyperplane field.

In other words, no hyperplane $\Pi \subset M$ can be tangent to ξ along any open subset of $\Pi.$

Standard Contact form on \mathbb{R}^3

For example, take $M = \mathbb{R}^3$ (ie, n = 1) and $\alpha = dz - ydx$.

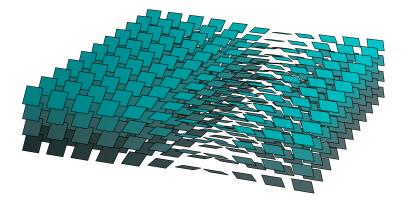


Figure: The standard contact structure on \mathbb{R}^3 , from Wikimedia Commons.

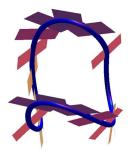
Definition

A Legendrian Submanifold $\Lambda \subseteq M$ of a smooth 2n + 1 dimensional contact manifold satisfies the following:

- **1** A is tangent to ξ : $TA_p \subseteq \xi_p$ for all $p \in \Lambda$ *(isotropic)*
- **2** dim $\Lambda = n$ (maximal)

In other words, a Legendrian submanifold is a submanifold that is everywhere tangent to the hyperplane field $\xi = \ker \alpha$.

Ex. Legendrian Submanifolds of \mathbb{R}^3



(a) Legendrian Unknot

(b) Legendrian Right-handed trefoil

Figure: Legendrian Submanifolds of \mathbb{R}^3 endowed with the standard contact form $\alpha = dz - ydx$. From the Duke Gallary of Legendrian knots.

Exact Lagrangian Fillings

Let Λ_+ and Λ_- be Lagrangian submanifolds of $(\mathbb{R}^3, \ker \alpha)$.

Definition

An Exact Lagrangian Cobordism $\Sigma \subset (\mathbb{R} \times \mathbb{R}^3, d(e^t \alpha))$ is a 2-dimensional surface such that there exists a T > 0 such that:

Q Σ is cylindrical over Λ_+ in the interval (T, ∞) :

$$\Sigma\cap(\mathit{T},\infty)\times\mathbb{R}^3)=(\mathit{T},\infty)\times\Lambda_+,$$

2 Σ is cylindrical over Λ_{-} in the interval $(-T, -\infty)$:

$$\Sigma \cap (-\infty, T) \times \mathbb{R}^3) = (-\infty, T) \times \Lambda_-,$$

Exact Lagrangian Fillings

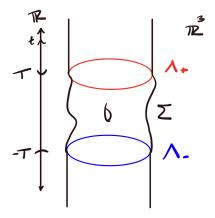


Figure: An Exact Lagrangian Cobordism.

Definition

If we can take $\Lambda_{-} = \emptyset$, then Σ is an **Exact Lagrangian Filling** of Λ_{+} .

The above examples are for $(\mathbb{R}^3, \ker \alpha)$. What if we take M to be a contact 5-manifold? Then Λ is a 2-dimensional surface, for instance Symplectic Toric Manifolds. Given some toric variety, can we classify the exact Lagrangian fillings?

- I'd like to thank my mentor Christopher Woodward for working with me this summer.
- **2** Work supported by the Rutgers Department of Mathematics.

- [1] Yu Pan. Exact Lagrangian fillings of Legendrian (2, n) torus links. *Pacific J. Math.*, 289(2):417–441, 2017. arXiv:1607.03167, doi:10.2140/pjm.2017.289.417.
- [2] Contact Manifolds Encyclopedia of Mathematical Physics, eds. J.-P. Françoise, G.L. Naber and S.T. Tsou, Oxford: Elsevier, v. 1 2006631–636.