
NOTES ON REPRESENTATION THEORY OF VERTEX ALGEBRAS

JONGWON KIM

1. Abstract

Last time, we showed the equivalence of a V-module structure on W and a representation of
V on W in the setting of the canonical weak vertex algebra E(W ). We will determine when a
subalgebra of E(W ) is indeed a vertex algebra. Moreover, focusing on the subalgebra E(W,d),
we will determine vertex operator subalgebras. Then we will go over some construction theorems
for vertex algebras and modules in a similar spirit.

2. hi

a(x) ∈ E(W ), then YW (a(x), x0) = a(x0).

3. Introduction

Previous week, Terence introduced the notion of weak vertex operators and weak vertex alge-
bras. Moreover, Terence established that V -module structure on a vector space W is equivalent
to giving a representation of V on W . However, our discussion was on the canonical weak vertex
algebra ιW (V ) = (E(W ), YE , 1W ), which usually is not a vertex algebra. To bring in vertex alge-
bras in this picture, which is our interest, we introduce the notion of subalgebras of E(W ) and
determine when subalgebras of E(W ) are in fact vertex algebras.

Recall the definition of a weak vertex algebra

Definition 3.1. A weak vertex algebra is a vector space V equipped with a linear map

Y (·, x) :V → (End V )[[x, x−1]]

v 7→ Y (v, x) =
∑
n∈Z

vnx
−n−1

and a distinguished element 1 ∈ V satisfying the vacuum property and the creation property

Y (1,x) = 1;

Y (v, x)1 ∈ V [[x]] and lim
x→0

Y (v, x)1 = v

for v ∈ V , and such that all the D-bracket and derivative properties hold:

[D, Y (v, x)] = Y (Dv, x) =
d

dx
Y (v, x)

where D ∈ End(V ) is defined by

D(v) = v−21
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and most important, the definition of operations from the last time

YE(a(x), x0)b(x) = Resx1

(
x−10 δ

(
x1 − x
x0

)
a(x1)b(x)− x−10 δ

(
x− x1
−x0

)
b(x)a(x1)

)
and

a(x)nb(x) = Resx1((x1 − x)na(x1)b(x)− (−x+ x1)
nb(x)a(x1))

Important case from the last talk was the case where a vertex algebra V is a substructure of
E(W ), a vertex algebra in which elements are weak vertex operators on W . Module structure of
W has a nice form, where

YW (a(x), x0) = a(x0)

4. Locality

The key in determining vertex subalgebras of a canonical weak vertex algebra is the weak
commutativity condition for pair of elements of E(W ) acting on W . For a(x), b(x) ∈ E(W ), we
say that a(x) and b(x) are mutually local if there exists a nonnegative integer k such that

(x1 − x2)ka(x1)b(x2) = (x1 − x2)kb(x2)a(x1)

An easy way to think why the locality is important is that locality allows truncated conditions
on mutually local elements. The general method to construct an example of a vertex algebra or
a vertex operator algebra is as follows: we start with a collection of mutually local weak vertex
operators on W , then we generate the weak vertex subalgebras of operators on W from them.
The result will be a vertex algebra of ”operators” on W and W will be a module for this algebra.

Definition 4.1. A weak vertex operator a(x) in E(W ) or E(W,d) is a vertex operator if it is local
with itself, that is, there exists a nonnegative integer k such that

(x1 − x2)k[a(x1), a(x2)] = 0

And we define a similar notion for a subspace

Definition 4.2. A subspace A of E(W ) is local if for any a(x), b(x) ∈ A, a(x) and b(x) are
mutually local. A local subalgebra of E(W ) is a weak vertex subalgebra which is a local subspace.

Clearly, a local subspace consists of vertex operators. In case of W being a module for Virasoro,
a notion of graded local subspace is defined in the obvious ways.

In this section, we will work toward proving that vertex subalgebras of E(W ) are exactly the
local subalgebras.

Theorem 4.3. Let V be a vertex subalgebra of E(W ). Then V is a local subalgebra. Moreover,
W is a module for V as a vertex algebra, with

YW (a(x), x0) = a(x0)

In particular, W is faithful

Proof. By the way YE(a(x), x0)b(x) satisfies the iterate formula,

YE(a(x), x0)b(x) = Resx1

(
x−10 δ

(
x1 − x
x0

)
a(x1)b(x)− x−10 δ

(
x− x1
−x0

)
b(x)a(x1)

)
it follows that W is a V -module with YW (a(x), x0) = a(x0). (from last week and Corollary 4.4.7).
Since we have weak commutativity for YW , it follows that V is local. (YW is clearly injective)

�
For the other direction, we start by proving the lower truncation condition.
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Theorem 4.4. Let a(x), b(x) ∈ E(W ) be mutually local with some k ≥ 0 on W . Then
a(x)nb(x) = 0 for n ≥ k.

Proof. From the previous week, we showed that each a(x)n maps E(W ) into itself, and moreover
that

a(x)nb(x) = Resx1((x1 − x)na(x1)b(x)− (−x+ x1)
nb(x)a(x1))

Now the locality proves the assertion immediately.
�

The next is weak commutativity.

Theorem 4.5. Let a(x), b(x) ∈ E(W ) be mutually local with k ≥ 0 on W . Then

(x1 − x2)kYE(a(x), x1)YE(b(x), x2) = (x1 − x2)kYE(b(x), x2)YE(a(x), x1)

Proof. We prove the assertion by viewing them as operators. Let c(x) ∈ E(W ). By definition,

YE(a(x), x1)(YE(b(x), x2)c(x))

= Resx3

(
x−11 δ

(
x3 − x
x1

)
a(x3)(YE(b(x), x2)c(x))− x−11 δ

(
x− x3
−x1

)
(YE(b(x), x2)c(x))a(x3)

)
=(definition again) Resx3Resx4x

−1
1 δ

(
x3 − x
x1

)
x−12 δ

(
x4 − x
x2

)
a(x3)b(x4)c(x)

− Resx3Resx4x
−1
1 δ

(
x3 − x
x1

)
x−12 δ

(
x4 − x
x2

)
a(x3)c(x)b(x4)

− Resx3Resx4x
−1
1 δ

(
x− x3
−x1

)
x−12 δ

(
x4 − x
x2

)
b(x4)c(x)a(x3)

+ Resx3Resx4x
−1
1 δ

(
x− x3
−x1

)
x−12 δ

(
x4 − x
x2

)
c(x)b(x4)a(x3)

On the other hand,

YE(b(x), x2)(YE(a(x), x1)c(x))

= Resx3Resx4x
−1
1 δ

(
x3 − x
x1

)
x−12 δ

(
x4 − x
x2

)
b(x4)a(x3)c(x)

− Resx3Resx4x
−1
1 δ

(
x3 − x
x1

)
x−12 δ

(
x4 − x
x2

)
b(x4)c(x)a(x3)

− Resx3Resx4x
−1
1 δ

(
x− x3
−x1

)
x−12 δ

(
x4 − x
x2

)
a(x3)c(x)b(x4)

+ Resx3Resx4x
−1
1 δ

(
x− x3
−x1

)
x−12 δ

(
x4 − x
x2

)
c(x)a(x3)b(x4)

Notice that the middle two lines are the same on both sides, so it is left to check equality on
the first and the fourth lines. By (2.2.56) and proposition 2.3.26, we get

(x1 − x2)kx−11 δ

(
x3 − x
x1

)
x−12 δ

(
x4 − x
x2

)
= (x3 − x4)kx−11 δ

(
x3 − x
x1

)
x−12 δ

(
x4 − x
x2

)
(in some sense, we are formally setting (x3 − x)/x1 = 1 and (x4 − x)/x2 = 1)

Now the assertion follows by multiplying (x1 − x2)k.
� �

Now as in the previous week’s conclusion, we have
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Theorem 4.6. Local subalgebras of E(W ) are preciely the vertex subalgebras, and W is a faithful
module satisfying YW (a(x), x0) = a(x0)

We know how to determine vertex subalgebras now and the main tool is to start with a local
subalgebra. Now, when do local subspaces generate local subalgebras?

Theorem 4.7. Let a(x), b(x), and c(x) be pairwise mutually local weak vertex operators on W .
Then a(x)nb(x) and c(x) are mutually local for all n ∈ Z.

Proof. a(x)nb(x) is a weak vertex operator since a(x)n maps E(W ) to E(W ).
Let n ∈ Z. Let r be a nonnegative integer ≥ −n such that

(x1 − x2)ra(x1)b(x2) = (x1 − x2)rb(x2)a(x1)

(x1 − x2)ra(x1)c(x2) = (x1 − x2)rc(x2)a(x1)

(x1 − x2)rb(x1)c(x2) = (x1 − x2)rc(x2)b(x1)

By definition,

a(x)nb(x) = Resx1((x1 − x)na(x1)b(x)− (−x+ x1)
nb(x)a(x1))

Writing (x− x2)4r = ((x− x1) + (x1 − x2))3r(x− x2)r, we get

(x− x2)4r
(
(x1 − x)na(x1)b(x)c(x2)− (−x+ x1)

nb(x)a(x1)c(x2)
)

=
3r∑
k=0

(
3r

k

)
(x− x1)3r−k(x1 − x2)k(x− x2)r

(
(x1 − x)na(x1)b(x)c(x2)− (−x+ x1)

nb(x)a(x1)c(x2)
)

((x1 − x)r+(r+n)[a(x1), b(x)] = 0 from the locality)

=
3r∑

k=r+1

(
3r

k

)
(x− x1)3r−k(x1 − x2)k(x− x2)r

(
(x1 − x)na(x1)b(x)c(x2)− (−x+ x1)

nb(x)a(x1)c(x2)
)

=
3r∑

k=r+1

(
3r

k

)
(x− x1)3r−k(x1 − x2)k(x− x2)r

(
(x1 − x)nc(x2)a(x1)b(x)− (−x+ x1)

nc(x2)b(x)a(x1)
)

=
3r∑
k=0

(
3r

k

)
(x− x1)3r−k(x1 − x2)k(x− x2)r

(
(x1 − x)nc(x2)a(x1)b(x)− (−x+ x1)

nc(x2)b(x)a(x1)
)

= (x− x2)4r
(
(x1 − x)nc(x2)a(x1)b(x)− (−x+ x1)

nc(x2)b(x)a(x1)
)

Taking Resx1

(x− x2)4r
(
a(x)nb(x)

)
c(x2) = (x− x2)4rc(x2)

(
a(x)nb(x)

)
�

Theorem 4.8. Any maximal local subspace is a vertex algebra with W as a faithful module.

Proof. Let A be a maximal local subspace. 1W is local with any vertex operator on W , so
1W ∈ A, other wise A ⊂ A+ C1W .

Le a(x), b(x) ∈ A. From the above theorem, a(x)nb(x) is local with a(x) and b(x). Then again,
a(x)nb(x) is local with itself. So A+Ca(x)nb(x) is again a local subspace and by the maximality,
A = A+ Ca(x)nb(x), showing that YE map is indeed over End(A), thus A is a vertex algebra.

�
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Theorem 4.9. Let S be a local subset of E(W ). Then S can be embedded in a vertex sub-
algebra of E(W ) and the weak vertex algebra 〈S〉 is a vertex algebra. Furthermore, 〈S〉 =

span{a(1)(x)n1 · · · a(x)(r)(x)nr : r ≥ 0, a(i)(x) ∈ S, ni ∈ Z}

Proof. Zorn’s lemma guarantees a maximal local subspace V containing S, which in fact is a
vertex subalgebra. Since 〈S〉 is a weak vertex algebra embedded in V , it is a vertex algebra.

It is clear that S is contained in that linear span by the creation property and any vertex
subalgebra containing S contains that linear span. And follows from 3.9.3

�

5. “Operator”

Now we recall the subspace E(W,d) of E(W ), the space of weak vertex operators on the pair
(W,d), where d is a linear operator on W .

Definition 5.1. E(W,d) = {a(x) ∈ E(W ) | [d, a(x)] = a′(x)}

Theorem 5.2. E(W,d) is a weak vertex subalgebra of E(W ).

Proof. Since 1 ∈ E(W,d), we must show that D-bracket property holds for a(x), b(x) ∈ E(W,d)

[d, YE(a(x), x0)b(x)] =
∂

∂x
YE((a(x), x0)b(x))

∂

∂x
YE((a(x), x0)b(x))

=
∂

∂x
Resx1

(
x−10 δ

(
x1 − x
x0

)
a(x1)b(x)− x−10 δ

(
x− x1
−x0

)
b(x)a(x1)

)
= Resx1

((
∂

∂x
x−10 δ

(
x1 − x
x0

))
a(x1)b(x)−

(
∂

∂x
x−10 δ

(
x− x1
−x0

))
b(x)a(x1)

)
+ Resx1

(
x−10 δ

(
x1 − x
x0

)
a(x1)b

′(x)− x−10 δ

(
x− x1
−x0

)
b′(x)a(x1)

)
=(2.3.20) −Resx1

((
∂

∂x1
x−10 δ

(
x1 − x
x0

))
a(x1)b(x)−

(
∂

∂x
x−10 δ

(
x− x1
−x0

))
b(x)a(x1)

)
+ Resx1

(
x−10 δ

(
x1 − x
x0

)
a(x1)b

′(x)− x−10 δ

(
x− x1
−x0

)
b′(x)a(x1)

)
=(2.2.6) Resx1

(
x−10 δ

(
x1 − x
x0

)
a′(x1)b(x)− x−10 δ

(
x− x1
−x0

)
b(x)a′(x1)

)
+ Resx1

(
x−10 δ

(
x1 − x
x0

)
a(x1)b

′(x)− x−10 δ

(
x− x1
−x0

)
b′(x)a(x1)

)
= [d, YE(a(x), x0)b(x)]

�
Vertex operator algebras are equipped with grading and a structure associated with the Vira-

soro algebra. LetW be a module for the Virasoro algebra. As usual, let LW (x) =
∑

n∈Z L(n)x−n−2,
the conformal weight vector. W is a restricted module if for every w ∈ W , L(n)w = 0 for n su-
ficiently large. So LW (x) is a homogeneous weak vertex operator on E(W,L(−1)) of weight two,
since

[LW (0), a(x)] = 2LW (x) + xL′W (x)
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We will continue our discussion for E(W,L(−1)) of a restricted module W for the Virasoro
algebra.

Now we want to consider when d = L(−1), where WW is a module for the Virasoro algebra.
Recall the definition of the space Eo(W,L(−1)), the space of homogeneous weak vertex operators
on (W,L(−1)).

Definition 5.3. Let W be a module for the Virasoro algebra. A weak vertex operator a(x) on
W is homogeneous of weight h ∈ C if

[L(0), a(x)] = ha(x) + xa′(x)(= ha(x) + x[L(−1), a(x)] if a(x) acts on (W,L(−1)))

Eo(W,L(−1)) is the linear span of all the homogeneous weak vertex operators on (W,L(−1))
such that

Eo(W,L(−1)) =
∐
h∈C
E(W,L(−1))(h)

where E(W,L(−1))(h) is the space of homoegeneous weak vertex operators on (W,L(−1)) of
weight h.

Our aim is to prove that any graded local subalgebra of Eo(W,L(−1)) containing LW (x) is a
vertex operator algebra with LW (x) playing the role of the conformal weight vector ω. (Without
two grading restrictions dimV(n) <∞ and dimV(n) = 0 for n large enough)

From the previous discussion, we have the following theorem

Theorem 5.4. Let W be a module for the Virasoro algebra. Let S be a local subset of homoge-
neous vertex operators on (W,L(−1)), such that the linear span of S is a graded local subspace of
Eo(W,L(−1)). Then 〈S〉 of E(W ) is a graded vertex subalebra of Eo(W,L(−1)) and (W,L(−1))
is a faithful module for 〈S〉 with YW (a(x), x0) = a(x0). Moreover, L(−1) bracket property holds
in 〈S〉

YW (Da(x), x0) = [L(−1), YW (a(x), x0)]

Suppose that W is a restricted module for the Virasoro algebra. Let S consist of a single
element LW (x). Then 〈LW (x)〉 is a Z-graded vertex subalgebra of Eo(W,L(−1)).

We would like to obtain vertex operator algebra structure from a given representation of the
Virasoro algebra on W .

If V is a graded vertex subalgebra of Eo(W,L(−1)) containing LW (x), then we would like to
show that LW (x) is in fact a conformal vector of V .

First, we prove that YE(LW (x), x0) induces a representation of the Virasoro algebra of central
charge l. Note that W is a faithful module for V .

We prove that if ω ∈ V is such that YW (ω, x) induces a representation of the Virasoro algebra,
then YE(ω, x) on V also induces a representation of the Virasoro algebra.

Theorem 5.5. Let U be a vector space, and let h(x1, x2) ∈ U [[x1, x2, x
−1
1 , x−12 ]]. If we can write

h(x1, x2) =
∑n

i=0 gi(x2)(
∂

∂x1
)ix−12 δ(x1/x2) such that gi(x2) ∈ U [[x2, x

−1
2 ]], then such expression

is unique.

Theorem 5.6. Let V be a vertex algebra, let u, v, w(0), . . . , w(k) ∈ V and let (W,YW ) be a
faithful V -module. Then

[Y (u, x1), Y (v, x2)] =
k∑

i=0

(−1)i

i!
Y (w(i), x2)(

∂

∂x1
)ix−12 δ(

x1
x2

)
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if and only if

[YW (u, x1), YW (v, x2)] =

k∑
i=0

(−1)i

i!
YW (w(i), x2)(

∂

∂x1
)ix−12 δ(

x1
x2

)

where w(i) = uiv and uiv = 0 for all i > k.

Proof. By commutator formula,

[Y (u, x1), Y (v, x2)] = Resx0x
−1
2 δ

(
x1 − x0
x2

)
Y (Y (u, x0)v, x2)

=

n∑
i=0

(−1)i

i!
Y (ui, x2)(

∂

∂x1
)ix−12 δ(

x1
x2

)

where n is large enough so that uiv = 0 for all i > n. This formula is from the Jacobi identity,
so it indeed holds for YW as well. Now it follows from the previous theorem.

�

Theorem 5.7. Y (ω, x) induces a representation of the Virasoro algebra if and only if YW (ω, x)
does.

Proof. The Virasoro algebra relations

[Lm, Ln] = (m− n)L(m+ n) +
l

12
(m3 −m)δm+n,0

in terms of generation functions is

[LW (x1), LW (x2)] =
∑

m,n∈Z
(m− n)L(m+ n)x−m−21 x−n−22 +

∑
m∈Z

l

12
(m3 −m)x−m−21 xm−22

=
∑

m,n∈Z
(−m− n− 2)L(m+ n)x−m−n−32 (x−m−21 xm+1

2 )

+
∑

m,n∈Z
2(m+ 1)L(m+ n)x−m−n−22 (x−m−21 xm2 )

+
∑
m∈Z

l

12
(m3 −m)x−m−21 xm−22

= L′W (x2)x
−1
1 δ(x2/x1)− 2LW (x2)

∂

∂x1
x−11 δ(x2/x1)−

l

12

( ∂

∂x1

)3
x−11 δ(x2/x1)

= L′W (x2)x
−1
2 δ(x1/x2)− 2LW (x2)

∂

∂x1
x−12 δ(x1/x2)−

l

12

( ∂

∂x1

)3
x−12 δ(x1/x2)

giving us

[Y (ω, x1), Y (ω, x2)]

= Y (Dω, x2)x−12 δ(x1/x2)− 2Y (ω, x2)
∂

∂x1
x−12 δ(x1/x2)−

l

12

( ∂

∂x1

)3
x−12 δ(x1/x2)

Apply the above theorem with k = 3, ω(0) = Dω, ω(1) = 2ω, ω(2) = 0 and ω(3) = (l/2)1.
�
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Theorem 5.8. Let W be a restricted module for the Virasoro algebra with the cental charge l and
let V be a graded vertex subalgebra of Eo(W,L(−1)) containing LW (x). Then (V, YE , 1W , LW )
is a vertex operator algebra with C-grading and without two grading restrictions. Grading on
Eo(W,L(−1)) provides a grading on V by LV (0) eigenvalues.

Proof. Let LV (x0) =
∑

n∈Z LV (n)x−n−20 = YE(LW (x), x0), which induces a representation of
the Virasoro algebra by the above disccussion on V .

Then by definition

LV (−1)a(x) = LW (x)0a(x) = [LW (−1), a(x)] = a′(x) = Da(x)

LV (0)a(x) = LW (x)1a(x) = [LW (0), a(x)]− x[LW (−1), a(x)]

=⇒ [LW (0), a(x)] = LV (0)a(x) + x[LW (−1), a(x)]

Where the second line equals ha(x) if a(x) ∈ V(h), proving the grading by eigenvalues. So L(−1)
bracket property holds on V , and

�
Now we may apply the theorem 4.9 in this setting.
Applying theorem 4.9 in the desired setting, we obtain Z grading and lots of properties of

vertex operator algebras.

6. Construction Theorems

Theorem 5.5.18 of LL is in fact the foundation of the most construction theorems.
The following is the most general construction theorem

Theorem 6.1. Let V be a vector space equipped with a distinguished vector 1 and a linear
operator d such that d1 = 0. Let T be a subset of V equipped with a “vertex” map

Y0(·, x) :T → Hom(V, V ((x)))

a 7→ Y0(a, x) =
∑
n∈Z

anx
−n−1

such that for a ∈ T , vacuum and creation properties hold:

Y0(a, x)1 ∈ V [[x]] and lim
x→0

Y0(a, x)1 = a

and the d-bracket property holds:

[d, Y0(a, x)] =
d

dx
Y0(a, x);

and for a, b ∈ T , we have locality (weak commutativity):

(x1 − x2)k[Y0(a, x1), Y0(b, x2)] = 0;

and V is linearly spanned by the vectors ”created by” T .
Then Y0 can be uniquely extended to a linear map Y from V to Hom(V, V ((x))) such that

(V, Y,1) is a vertex algebra. Vertex algebra structure is obvious

Y (a(1)n1
· · · a(r)nr

1) = a(1)(x)n1 · · · a(r)(x)nr1V

where a(x) = Y0(a, x), and d on V satisfies

d(v) = v−21
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Furthermore, writing T (x) = {a(x) | a ∈ T}, we have an isomorphism of vertex algebras

ψ :〈T 〉 → V

α(x) 7→ Resxx
−1α(x)1

Proof. First half follows easily from the theorems we have established already. So 〈T 〉 is a
vertex algebra with (V, d) as a module with YV (α(x), x0) = α(x0). So the ψ map can be written
as

ψ(α(x)) = Resxx
−1α(x)1 = Resx0x

−1
0 YV (α(x), x0)1

where it follows from Chapter 4, that ψ is a 〈T 〉-module isomorphism as (V, d) is a faithful module.
So V has a vertex algebra structure from such isomorphism. We determine key properties:

ψ(1V ) = Resx0x
−1
0 YV (1V , x0)1 = Resx0x

−1
0 1V (x0)1 = 1V 1 = 1

showing that 1 is in fact the vacuum vector of V .
Using the property of homomorphism, Y map is defined naturally in that

Y (a, x0) = ψYE(ψ
−1a, x0)ψ

−1 = YV (ψ−1a, x0) = YV (a(x), x0) = a(x0)

Formal differentiation operator D acting as D(v) = v−11 satisfies [D, Y (v, x)] = d
dxY (v, x), and

D and d act the same on 1, and V is spanned by things with 1, so d acts the same way as D.
�

If we add in a condition that V is a restricted module for the Virasoro algebra, then we naturally
get that V will be a vertex operator algebra.

7. Formal Calculus Identities

Resx(f ′(x)v(x)) = −Resx(f(x)v′(x))(2.2.6)

∂

∂x1
x−10 δ

(
x1 − x2
x0

)
= − ∂

∂x2
x−10 δ

(
x1 − x2
x0

)
= − ∂

∂x0
x−10 δ

(
x1 − x2
x0

)
(2.3.20)

x−11 δ

(
x2 − y
x1

)
f(x1, x2, y) = x−11 δ

(
x2 − y
x1

)
f(x2 − y, x2, y)(2.3.56)


