Concordance Invariants of Satellite Knots

J. Patwardhan\(^1\) \hspace{1cm} Z. Xiao\(^2\)

\(^1\)Rutgers University
\(^2\)Columbia University

DIMACS REU
A knot is a loop of string in \mathbb{R}^3, which has no thickness, with its cross-section being a single point. (Formally, we say a knot is an embedding $S^1 \hookrightarrow S^3$.)

(a) The unknot. (b) A trefoil knot.

There are many different pictures of the same knot. Below are all pictures of the figure eight knot.
We study knots because they are closely related to 3 and 4 dimensional manifolds.

Theorem (Lickorish, Wallace, 1960s)

Every closed orientable 3-dimensional manifold can be described in terms of a collection of knots and an integer associated to each knot.

Note that 3D manifolds are hard to visualize, but knots are not!
Knots are often studied up to a notion of equivalence, called knot concordance.

Two knots are said to be **concordant** if they jointly form the boundary of a cylinder in $S^3 \times [0, 1]$.

Formally speaking, two knots K and J are said to be **concordant** ($K \sim J$) if there is an embedding $f : S^1 \times [0, 1] \to S^3 \times [0, 1]$ such that $f(S^1 \times 0) = K$ and $f(S^1 \times 1) = J$.

The set of concordance classes of knots form a group, denoted \mathcal{C}.
In 2003, P. Ozsváth and Z. Szabó defined an invariant of the concordance class of a knot, called the τ-invariant. Formally, the τ-invariant is a group homomorphism $\tau : \mathcal{C} \rightarrow \mathbb{Z}$ which sends all elements of a concordance class to an integer.

J. Hom defined the ϵ-invariant, valued in $\{-1, 0, 1\}$.

The goal of this project is to compute τ and ϵ for specific types of knots (denoted by $P(K)$), called satellite knots.
A satellite knot has two components: a pattern knot P (embedded in a solid torus) and a companion knot K. Cut up the torus and glue it back according to K. The image of P under this process is called the satellite knot with pattern P and companion K, denoted by $P(K)$.

E.g., let P be the Whitehead double, K be the figure eight.
We are interested in the satellite knots coming from the Mazur pattern Q, shown below, as well as generalizations of this pattern $Q_{m,n}$.
In 2016, A. Levine used a family of knot invariants called **bordered knot Floer homology** to give a formula of the tau-invariant of satellite knots with Mazur patterns.

Theorem (Levine, 2016)

Let Q denote the Mazur pattern. For any knot $K \subset S^3$,

$$
\tau(Q(K)) = \begin{cases}
\tau(K) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) \in \{0, 1\}, \\
\tau(K) + 1 & \text{if } \tau(K) > 0 \text{ or } \epsilon(K) = -1.
\end{cases}
$$

Our first goal is to simulate this process to compute tau-invariant for general Mazur patterns $Q_{m,n}$.

Main Theorem

For any knot $K \subset S^3$, we have

$$\tau(Q_{m,n}(K)) = \begin{cases}
|m - n|\tau(K) + (m - 1) & \text{if } \tau(K) > 0 \text{ and } m > n, \\
|m - n|\tau(K) + m & \text{if } \tau(K) > 0 \text{ and } m \leq n, \\
(m - n)\tau(K) + (m - 1) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) = -1, \\
(m - n)\tau(K) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) = 0, 1.
\end{cases}$$

In particular, when the winding number of $Q_{m,n}$ is 1:

$$\tau(Q_{m,n}(K)) = \begin{cases}
\tau(K) + m & \text{if } \tau(K) > 0, \\
-\tau(K) + (m - 1) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) = -1, \\
-\tau(K) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) = 0, 1.
\end{cases}$$

When the winding number is -1:

$$\tau(Q_{m,n}(K)) = \begin{cases}
\tau(K) + (m - 1) & \text{if } \tau(K) > 0 \text{ or } \epsilon(K) = -1, \\
\tau(K) & \text{if } \tau(K) \leq 0 \text{ and } \epsilon(K) = 0, 1.
\end{cases}$$
To a 3-manifold Y, we associate two invariants: \(CFD^*(Y) \) and \(CFA^*(Y) \).

The pairing theorem states that for a pattern knot $P \subset V = S^1 \times D^2$ and a companion knot K, we have

\[
gCFK^*(S^3, P(K)) \simeq CFA^*(V, P) \boxtimes CFD^*(X_K),
\]

Once we have \(gCFK^*(S^3, P(K)) \), calculating the τ-invariant for $P(K)$ is easy.

We know \(CFD^*(X_K) \) from literature. We can calculate \(CFA^*(V, P) \) combinatorially via bordered Heegaard diagrams of P.

Patwardhan, Xiao
Concordance Invariants of Satellite Knots
Bordered Heegaard Diagrams

To each knot $P \subset V$, we can associate a **bordered Heegaard diagram**

From the bordered Heegaard diagrams, we enumerate all the "pseudoholomorphic disks" to recover $\text{CFA}^*(V, P)$.
Strategy to Construct Bordered Diagrams for $Q_{m,n}$
Example: Calculating $Q_{1,2}$

The bordered Heegaard diagram for $Q_{1,2}$ is given by
Example: Calculating $Q_{1,2}$

The complex $CFA^*(V, Q_{1,2})$ is:

For any knot $K \subset S^3$, the complex $CFD^*(X_K)$ looks like

By the pairing theorem, we obtain the tensor complex

$$gCFK^*(P(K)) = CFA^*(V, Q_{1,2}) \otimes CFD^*(X_K):$$
The calculation for $\epsilon(Q_{m,n}(K))$ amounts to finding $\tau(Q_{m,n}(K)_{2,1})$ and $\tau(Q(K)_{2,-1})$.

We do this calculation via an algorithm designed by R. Lipshitz, P. Ozsváth and D. Thurston, and implemented in Python by B. Zhan.

Question (Akbulut, 1997)

Does there exist a winding number ± 1 satellite operator P for which $P(K)$ is never exotically slice?

- Levine’s paper answered this in the affirmative, with P as the Mazur pattern.
- If $\epsilon(Q_{m,n}(K))$ turns out as expected when the winding number is ± 1, we would have found a large family of examples that answer the aforementioned question.
We would like to thank

- Professor Hendricks and Professor Mallick
- Rutgers Department of Mathematics
- NSF CAREER Grant DMS-2019396
References

- Peter Ozsváth and Zoltán Szabó, "Knot Floer homology and the four-ball genus", Geom. Topol. 7 (2003), 615-639.
- Ruth A. Situma, "One Knot at a Time: PIMS CRG PDF Wenzhao Chen, on Knot Theory and Classification.,” https://medium.com/pims-math/one-knot-at-a-time-pims-crg-pdf-wenzhaochen-
on-knot-theory-and-classification-355a3d4dd7fb.

Patwardhan, Xiao Concordance Invariants of Satellite Knots
Thanks for your time!