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What is a knot?
A knot is a loop of string in R3, which has no thickness, with its
cross-section being a single point. (Formally, we say a knot is
an embedding S1 ↪→ S3.)

There are many different pictures of the same knot. Below are
all pictures of the figure eight knot.
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Why knots?

We study knots because they are closely related to 3 and 4
dimensional manifolds.

Theorem (Lickorish, Wallace, 1960s)
Every closed orientable 3-dimensional manifold can be
described in terms of a collection of knots and an integer
associated to each knot.

Note that 3D manifolds are hard to visualize, but knots are not!
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Concordance
Knots are often studied up to a notion of equivalence,
called knot concordance.
Two knots are said to be concordant if they jointly form the
boundary of a cylinder in S3 × [0,1].
Formally speaking, two knots K and J are said to be
concordant (K ∼ J) if there is an embedding
f : S1 × [0,1] → S3 × [0,1] such that f (S1 × 0) = K and
f (S1 × 1) = J
The set of concordance classes of knots form a group,
denoted C .
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Two types of Concordance Invariants

In 2003, P. Ozsváth and Z. Szabó defined an invariant of
the concordance class of a knot, called the τ -invariant.
Formally, the τ -invariant is a group homomorphism
τ : C → Z which sends all elements of a concordance
class to an integer.
J. Hom defined the ϵ-invariant, valued in {−1,0,1}.
The goal of this project is to compute τ and ϵ for specific
types of knots (denoted by P(K )), called satellite knots.
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Satellite Knot

A satellite knot has two components: a pattern knot P
(embedded in a solid torus) and a companion knot K. Cut
up the torus and glue it back according to K . The image of
P under this process is called the satellite knot with
pattern P and companion K , denoted by P(K ).
E.g., let P be the Whitehead double, K be the figure eight
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Mazur Pattern

We are interested in the satellite knots coming from the Mazur
pattern Q, shown below, as well as generalizations of this
pattern Qm,n.
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Bordered Knot Floer Homology

In 2016, A. Levine used a family of knot invariants called
bordered knot Floer homology to give a formula of the
tau-invariant of satellite knots with Mazur patterns.

Theorem (Levine, 2016)

Let Q denote the Mazur pattern. For any knot K ⊂ S3,

τ(Q(K )) =

{
τ(K ) if τ(K ) ≤ 0 and ϵ(K ) ∈ {0,1},
τ(K ) + 1 if τ(K ) > 0 or ϵ(K ) = −1.

Our first goal is to simulate this process to compute
tau-invariant for general Mazur patterns Qm,n.
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Main Theorem
For any knot K ⊂ S3, we have

τ(Qm,n(K )) =


|m − n|τ(K ) + (m − 1) if τ(K ) > 0 and m > n,
|m − n|τ(K ) + m if τ(K ) > 0 and m ≤ n,
(m − n)τ(K ) + (m − 1) if τ(K ) ≤ 0 and ϵ(K ) = −1,
(m − n)τ(K ) if τ(K ) ≤ 0 and ϵ(K ) = 0,1.

In particular, when the winding number of Qm,n is 1:

τ(Qm,n(K )) =


τ(K ) + m if τ(K ) > 0,
−τ(K ) + (m − 1) if τ(K ) ≤ 0 and ϵ(K ) = −1,
−τ(K ) if τ(K ) ≤ 0 and ϵ(K ) = 0,1.

When the winding number is −1:

τ(Qm,n(K )) =

{
τ(K ) + (m − 1) if τ(K ) > 0 or ϵ(K ) = −1,
τ(K ) if τ(K ) ≤ 0 and ϵ(K ) = 0,1.
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Strategy

To a 3-manifold Y , we associate two invariants: CFD∗(Y )
and CFA∗(Y ).
The pairing theorem states that for a pattern knot
P ⊂ V = S1 × D2 and a companion knot K , we have

gCFK ∗(S3,P(K )) ≃ CFA∗(V ,P)⊠ CFD∗(XK ),

Once we have gCFK ∗(S3,P(K )), calculating the
τ -invariant for P(K ) is easy.
We know CFD∗(XK ) from literature. We can calculate
CFA∗(V ,P) combinatorially via bordered Heegaard
diagrams of P.
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Bordered Heegaard Diagrams

To each knot P ⊂ V , we can associate a bordered Heegaard
diagram

Diagram for the trivial pattern Diagram for the Mazur pattern

From the bordered Heegaard diagrams, we enumerate all the
"pseudoholomorphic disks" to recover CFA∗(V ,P).
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Strategy to Construct Bordered Diagrams for Qm,n
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Example: Calculating Q1,2

The bordered Heegaard diagram for Q1,2 is given by
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Example: Calculating Q1,2

The complex CFA∗(V ,Q1,2) is:

For any knot K ⊂ S3, the complex CFD∗(XK ) looks like

By the pairing theorem, we obtain the tensor complex
gCFK ∗(P(K )) = CFA∗(V ,Q1,2)⊠ CFD∗(XK ):
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Calculation for ϵ(Qm,n(K ))

The calculation for ϵ(Qm,n(K )) amounts to finding
τ(Qm,n(K )2,1) and τ(Q(K )2,−1).
We do this calculation via an algorithm designed by R.
Lipshitz, P. Ozsváth and D. Thurston, and implemented in
Python by B. Zhan.

Question (Akbulut, 1997)
Does there exist a winding number ±1 satellite operator P for
which P(K ) is never exotically slice?

Levine’s paper answered this in the affirmative, with P as
the Mazur pattern.
If ϵ(Qm,n(K )) turns out as expected when the winding
number is ±1, we would have found a large family of
examples that answer the aforementioned question.
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Thanks for your time!
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