Concordance Invariants of Satellite Knots

J. Patwardhan ${ }^{1} \quad$ Z. Xiao ${ }^{2}$

${ }^{1}$ Rutgers University
${ }^{2}$ Columbia University

DIMACS REU

What is a knot?

A knot is a loop of string in \mathbb{R}^{3}, which has no thickness, with its cross-section being a single point. (Formally, we say a knot is an embedding $S^{1} \hookrightarrow S^{3}$.)

a

b
(a) The unknot. (b) A trefoil knot.

There are many different pictures of the same knot. Below are all pictures of the figure eight knot.

Why knots?

We study knots because they are closely related to 3 and 4 dimensional manifolds.

Theorem (Lickorish, Wallace, 1960s)

Every closed orientable 3-dimensional manifold can be described in terms of a collection of knots and an integer associated to each knot.

Note that 3D manifolds are hard to visualize, but knots are not!

Concordance

- Knots are often studied up to a notion of equivalence, called knot concordance.
- Two knots are said to be concordant if they jointly form the boundary of a cylinder in $S^{3} \times[0,1]$.
- Formally speaking, two knots K and J are said to be concordant $(K \sim J)$ if there is an embedding $f: S^{1} \times[0,1] \rightarrow S^{3} \times[0,1]$ such that $f\left(S^{1} \times 0\right)=K$ and $f\left(S^{1} \times 1\right)=J$
- The set of concordance classes of knots form a group, denoted \mathscr{C}.

- In 2003, P. Ozsváth and Z. Szabó defined an invariant of the concordance class of a knot, called the τ-invariant.
- Formally, the τ-invariant is a group homomorphism $\tau: \mathscr{C} \rightarrow \mathbb{Z}$ which sends all elements of a concordance class to an integer.
- J. Hom defined the ϵ-invariant, valued in $\{-1,0,1\}$.
- The goal of this project is to compute τ and ϵ for specific types of knots (denoted by $P(K)$), called satellite knots.
- A satellite knot has two components: a pattern knot P (embedded in a solid torus) and a companion knot K. Cut up the torus and glue it back according to K. The image of P under this process is called the satellite knot with pattern P and companion K, denoted by $P(K)$.
- E.g., let P be the Whitehead double, K be the figure eight

$$
P \subset S^{1} \times D^{2}
$$

pattern knot

$K \subset S^{3}$
companion knot

$$
P(K) \subset S^{3}
$$

satellite knot

We are interested in the satellite knots coming from the Mazur pattern Q, shown below, as well as generalizations of this pattern $Q_{m, n}$.

Bordered Knot Floer Homology

In 2016, A. Levine used a family of knot invariants called bordered knot Floer homology to give a formula of the tau-invariant of satellite knots with Mazur patterns.

Theorem (Levine, 2016)

Let Q denote the Mazur pattern. For any knot $K \subset S^{3}$,

$$
\tau(Q(K))= \begin{cases}\tau(K) & \text { if } \tau(K) \leq 0 \text { and } \epsilon(K) \in\{0,1\}, \\ \tau(K)+1 & \text { if } \tau(K)>0 \text { or } \epsilon(K)=-1 .\end{cases}
$$

Our first goal is to simulate this process to compute tau-invariant for general Mazur patterns $Q_{m, n}$.

For any knot $K \subset S^{3}$, we have

$$
\tau\left(Q_{m, n}(K)\right)= \begin{cases}|m-n| \tau(K)+(m-1) & \text { if } \tau(K)>0 \text { and } m>n, \\ |m-n| \tau(K)+m & \text { if } \tau(K)>0 \text { and } m \leq n, \\ (m-n) \tau(K)+(m-1) & \text { if } \tau(K) \leq 0 \text { and } \epsilon(K)=-1, \\ (m-n) \tau(K) & \text { if } \tau(K) \leq 0 \text { and } \epsilon(K)=0,1 .\end{cases}
$$

In particular, when the winding number of $Q_{m, n}$ is 1:

$$
\tau\left(Q_{m, n}(K)\right)= \begin{cases}\tau(K)+m & \text { if } \tau(K)>0, \\ -\tau(K)+(m-1) & \text { if } \tau(K) \leq 0 \text { and } \epsilon(K)=-1, \\ -\tau(K) & \text { if } \tau(K) \leq 0 \text { and } \epsilon(K)=0,1 .\end{cases}
$$

When the winding number is -1 :

$$
\tau\left(Q_{m, n}(K)\right)= \begin{cases}\tau(K)+(m-1) & \text { if } \tau(K)>0 \text { or } \epsilon(K)=-1, \\ \tau(K) & \text { if } \tau(K) \leq 0 \text { and } \epsilon(K)=0,1 .\end{cases}
$$

- To a 3-manifold Y, we associate two invariants: $\operatorname{CFD}^{*}(Y)$ and $C F A^{*}(Y)$.
- The pairing theorem states that for a pattern knot $P \subset V=S^{1} \times D^{2}$ and a companion knot K, we have

$$
g C F K^{*}\left(S^{3}, P(K)\right) \simeq C F A^{*}(V, P) \boxtimes C F D^{*}\left(X_{K}\right),
$$

- Once we have $g_{C F K}{ }^{*}\left(S^{3}, P(K)\right)$, calculating the τ-invariant for $P(K)$ is easy.
- We know $\operatorname{CFD}^{*}\left(X_{K}\right)$ from literature. We can calculate CFA* (V, P) combinatorially via bordered Heegaard diagrams of P.

Bordered Heegaard Diagrams

To each knot $P \subset V$, we can associate a bordered Heegaard diagram

Diagram for the trivial pattern

Diagram for the Mazur pattern

From the bordered Heegaard diagrams, we enumerate all the "pseudoholomorphic disks" to recover CFA $^{*}(V, P)$.

Strategy to Construct Bordered Diagrams for $Q_{m, n}$

Example: Calculating $Q_{1,2}$

The bordered Heegaard diagram for $Q_{1,2}$ is given by

Example: Calculating $Q_{1,2}$

The complex $\operatorname{CFA}^{*}\left(V, Q_{1,2}\right)$ is:

For any knot $K \subset S^{3}$, the complex $\operatorname{CFD}^{*}\left(X_{K}\right)$ looks like

$$
\eta_{0} \xrightarrow{D_{3}} \mu_{1} \xrightarrow{D_{23}} \cdots \xrightarrow{D_{23}} \mu_{s} \stackrel{D_{1}}{\longleftrightarrow} \xi_{0}
$$

By the pairing theorem, we obtain the tensor complex $g_{C F K}{ }^{*}(P(K))=$ CFA $^{*}\left(V, Q_{1,2}\right) \boxtimes C F D^{*}\left(X_{K}\right)$:

Calculation for $\epsilon\left(Q_{m, n}(K)\right)$

- The calculation for $\epsilon\left(Q_{m, n}(K)\right)$ amounts to finding $\tau\left(Q_{m, n}(K)_{2,1}\right)$ and $\tau\left(Q(K)_{2,-1}\right)$.
- We do this calculation via an algorithm designed by R. Lipshitz, P. Ozsváth and D. Thurston, and implemented in Python by B. Zhan.

Question (Akbulut, 1997)

Does there exist a winding number ± 1 satellite operator P for which $P(K)$ is never exotically slice?

- Levine's paper answered this in the affirmative, with P as the Mazur pattern.
- If $\epsilon\left(Q_{m, n}(K)\right)$ turns out as expected when the winding number is ± 1, we would have found a large family of examples that answer the aforementioned question.

Acknowledgements

We would like to thank

- Professor Hendricks and Professor Mallick
- Rutgers Department of Mathematics
- NSF CAREER Grant DMS-2019396
- Adam Levine, "Non-surjective satellite operators and piecewise-linear concordance", Forum of Mathematics (2014), Sigma. 4. 10.1017/fms.2016.31.
- Collin Adams, Knot Book (1994), W.H. Freeman.
- Dale Rolfsen, Knots and links, American Mathematical Society (2004).
- Peter Ozsváth and and Zoltán Szabó, "Knot Floer homology and the four-ball genus", Geom. Topol. 7 (2003), 615-639.
- Ruth A. Situma, "One Knot at a Time: PIMS CRG PDF Wenzhao Chen, on Knot Theory and Classification.," https://medium.com/pims-math/ one-knot-at-a-time-pims-crg-pdf-wenzhaochen-\} on-knot-theory-and-classification-355a3d4dd7fb.

Thanks for your time!

