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Exercise 1
Exercise: Let A be an algebra of subsets of X. Prove that A is a o-algebra if and only if it is closed under
increasing countable unions.

Solution:

Proof. By definition, if A is a g-algebra, it is closed under countable unions, including increasing countable
unions, so it remains to show the other direction. Let {A,,},en C A be an arbitrary sequence of sets. Define

T

Clearly B,, C Bp+1, s0 {By}nen is a countable increasing sequence, and since A is an algebra and each B,,
is formed by a finite union of members of A, each B, is in A. We have

G A, = D B, € A.
n=1 n=1

Exercise 2

Exercise: Let X be a non-empty set and let m* be an outer measure on X with m*(X) < oco. Let
v*(E) = (m*(E))Y? for all E C X. Prove that v* is also an outer measure. Prove that a set E belongs to
the Carathéodory o-algebra of v* iff v*(E)v*(X\E) = 0.

Solution: First, we show that v* is also an outer measure.

Proof. First, we see that v*(#) = (m*(#))*/? = 0/2 = 0. Next, for A C B, we know that u*(A) < u*(B)
by the properties of an outer measure. Since the square-root function is monotone increasing, this means
(u* (A2 < (u*(B))Y2, so v*(A) < v*(B). Finally, we use the subadditivity of the square root function to
see that

[e%s) 0 1/2 fe%e] 1/2 [e%s) [e%e]
v* <U Anoo> = <m* (U An>> < (Z m*(An)> <A =3 vt (4)
n=1 n=1 n=1 n=1

n=1

O

Now, we show that E belongs to the Carathéodory o-algebra of v*, M(v*), if and ouly if either v*(E) =0
or v*(X\E) = 0. Of course, if v*(E) or v*(X\E) are zero, then they belong to this o-algebra, so it remains
to show the other direction.

Proof. Suppose E € M(v*). Then, we must have v*(X) = v*(X N E) + v*(X\FE). Squaring both sides,

we see that m*(X) = m*(X N E) + m*(X\E) + 2v*(X N E)v*(X\E) = m*(X N E) + m*(X\E), and since
X N E = FE, this means either v*(F) =0 or v*(X\E) = 0. O



Exercise 3

Exercise: Assume E C R has Lebesgue outer measure 0, i.e. Aj(E) = 0, where A} is the one-dimensional
Lebesgue outer measure. Prove that R\ E is dense in R. Also prove that for all A C R, we have A\j(AUE) =
AT(A) = A (A\E).

Solution: First, we show that R\ E is dense in R.

Proof. Let z,y € R with x < y (so A\j((z,y)) > 0). We must have (z,y) N (R\E) # 0. To see why, suppose
not; then (z,y) C F, and by monotonicity Aj(E) > Aj((z,y)) > 0, contradicting A\j(E) = 0. Since x and y
were arbitrary and (x,y) N (R\E) # 0, R\E is dense in R.

O

Now, we show that for all A C R that \j(AU E) = A\j(A4) = \j(4A\E).
Proof. First we show the equality Aj(AU E) = A\j(A). By subadditivity, we have
Ni(AUE) < Xi(4) + X (E) = M (A)

and since A C AU E we have by monotonicity that A} (A) < Aj(AUE), showing that AJ(AUE) = Aj(A). To
show the equality Aj(A) = AJ(A\E), we first note that since A\F C A, \j(A\E) < A\j(A4) by monotonicity.
We can also see that (A\E)U (E N A) = A, so by subadditivity

AL(A) = M((A\E) U (ENA)) S A(A\E) + A1 (ENA) = A[(A\E)

(we know AJ(E N A) =0 because EN A C E). Therefore, A\J(A\E) = A\j(A). O

Exercise 4

Exercise: For all 6 € (0,1) we construct a set Cs in a similar manner to the Cantor set. We start from
[0,1] and we remove from every remaining interval of the k-th step a middle interval of length 63=*. Prove
that Cs is compact and with no isolated points. Prove that it does not contain an interval and prove that
)\1(05) =1-6>0.

Solution: Compactness is easy to show: we take the closed interval [0, 1] and take away countably many
open intervals (which is the same as intersecting with the complement of the interval, which is closed). As Cjs
is a countable intersection of closed sets, and it is bounded, it must be compact. To show that A (Cs) =0,
we consider that at the k-step, there are 2°~1 intervals remaining, and so we obtain

> 5§, 5§ 2)\F 5 (2/3 5
_ k—1 —k ko—k __ _ _
M(Cs)=1-=) 2F1 (53 )1—55 2k3 _1—55 (3) _1—2(1/3)_1—2(2)
k=1 k=1 k=1
=1-04.

Now, we show that Cs does not contain an interval. After the k-th step, notice that each of the remaining
2% intervals have an equal length, which is

1 S\ 1-6 6
2k<122<3) ) R wvady

k'=1

Since the length of all remaining intervals tends to zero as k — oo, Cy cannot contain any intervals. A
similar argument shows that Cs does not contain any isolated points: let x € C's and € > 0. Then, since the
length of each interval remaining after step k tends towards zero as k — oo, there exists a step where the
length of each remaining interval has length < e. x must be contained in some interval, and is at most €
away from the endpoints of this interval (which are also in Cs), so « is not an isolated point of Cj.

Page 2



Exercise 5
Exercise: Let f: R — R be a measurable function. Prove that f is integrable iff

Z km{z e R:|f(x)] > 2F}) <

k=—o00

Solution: We will write A, = {x € R : |f(x)| > 2¥}, and By = {z € R : 2¥ < |f(2)| < 2FF'}. Observe
that the family of all By is pairwise disjoint, and that Ay = (J,2), Bx. As a result, m(Ax) = >_,2, m(By).
Moreover, notice that A = J;—_ . Ay ={z € R: f(x) # 0}, s0 [, fdm = [, fdm.

Proof. (=) Assume f is integrable, so fR |f|dm < co. We can see that

> 2k1p, <|f],
k=—o00
SO
/|f|dm— Z/ | dm > Z / = 3 2m(By)

k=—o0

(showing the rightmost sum is finite). Notice that all terms are positive, which allows us to use Fubini’s
theorem for series as follows:

o0
> miag= 3 a0 = 3 YEmm) = 3 2y <
k=—o0 k=—o00 {=k Fublmﬁ_—ook 14 l=—00
(<) Assume Ezozfoo 2Fm(Ay) < oo. Since By C Ay, 1, < 1a,, and thus
o0 o0
f1< D0 2 g < > 2k,
k=—oc0 k=—oc0
Integrating yields
/|f\dm< Z 28+ m(AL) < oo
k=—oc0
as desired. O

Exercise 6

Exercise: If f is Lebesgue integrable on [—1, 1], prove that lim, f_ll 2" f(x)dx = 0.

Solution:

Proof. We shall use the dominated convergence theorem. Define f,(z) = z™f(z). As f is Lebesgue inte-
grable, it must be finite almost everywhere. Thus, we can see that

lim f,(x) =0 a.e.

n—oo

(wherever f is finite-valued). Moreover, on [—1,1], we know |z"| < 1, so |fn(2)| = |2™f(z)| < |f(z)|. By the
dominated convergence theorem, and using the fact that this pointwise limit is 0 a.e., we can see that

1 1 1
lim x”f(x)dx:/ lim x"f(x)dx:/ 0dz =0.

n—oo [_4 _1n—oo 1
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