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Exercise 1

Exercise: Let A be an algebra of subsets of X. Prove that A is a σ-algebra if and only if it is closed under
increasing countable unions.

Solution:

Proof. By definition, if A is a σ-algebra, it is closed under countable unions, including increasing countable
unions, so it remains to show the other direction. Let {An}n∈N ⊆ A be an arbitrary sequence of sets. Define

Bn =

n⋃
m=1

An

Clearly Bn ⊆ Bn+1, so {Bn}n∈N is a countable increasing sequence, and since A is an algebra and each Bn

is formed by a finite union of members of A, each Bn is in A. We have

∞⋃
n=1

An =

∞⋃
n=1

Bn ∈ A.

Exercise 2

Exercise: Let X be a non-empty set and let m∗ be an outer measure on X with m∗(X) < ∞. Let
ν∗(E) = (m∗(E))1/2 for all E ⊆ X. Prove that ν∗ is also an outer measure. Prove that a set E belongs to
the Carathéodory σ-algebra of ν∗ iff ν∗(E)ν∗(X\E) = 0.

Solution: First, we show that ν∗ is also an outer measure.

Proof. First, we see that ν∗(∅) = (m∗(∅))1/2 = 01/2 = 0. Next, for A ⊆ B, we know that µ∗(A) ≤ µ∗(B)
by the properties of an outer measure. Since the square-root function is monotone increasing, this means
(µ∗(A))1/2 ≤ (µ∗(B))1/2, so ν∗(A) ≤ ν∗(B). Finally, we use the subadditivity of the square root function to
see that

ν∗

( ∞⋃
n=1

An∞

)
=

(
m∗

( ∞⋃
n=1

An

))1/2

≤

( ∞∑
n=1

m∗(An)

)1/2

≤
∞∑

n=1

(m∗(An))
1/2

=

∞∑
n=1

ν∗(An)

Now, we show that E belongs to the Carathéodory σ-algebra of ν∗, M(ν∗), if and only if either ν∗(E) = 0
or ν∗(X\E) = 0. Of course, if ν∗(E) or ν∗(X\E) are zero, then they belong to this σ-algebra, so it remains
to show the other direction.

Proof. Suppose E ∈ M(ν∗). Then, we must have ν∗(X) = ν∗(X ∩ E) + ν∗(X\E). Squaring both sides,
we see that m∗(X) = m∗(X ∩ E) +m∗(X\E) + 2ν∗(X ∩ E)ν∗(X\E) = m∗(X ∩ E) +m∗(X\E), and since
X ∩ E = E, this means either ν∗(E) = 0 or ν∗(X\E) = 0.
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Exercise 3

Exercise: Assume E ⊆ R has Lebesgue outer measure 0, i.e. λ∗
1(E) = 0, where λ∗

1 is the one-dimensional
Lebesgue outer measure. Prove that R\E is dense in R. Also prove that for all A ⊆ R, we have λ∗

1(A∪E) =
λ∗
1(A) = λ∗

1(A\E).

Solution: First, we show that R\E is dense in R.

Proof. Let x, y ∈ R with x < y (so λ∗
1((x, y)) > 0). We must have (x, y) ∩ (R\E) ̸= ∅. To see why, suppose

not; then (x, y) ⊆ E, and by monotonicity λ∗
1(E) ≥ λ∗

1((x, y)) > 0, contradicting λ∗
1(E) = 0. Since x and y

were arbitrary and (x, y) ∩ (R\E) ̸= ∅, R\E is dense in R.

Now, we show that for all A ⊆ R that λ∗
1(A ∪ E) = λ∗

1(A) = λ∗
1(A\E).

Proof. First we show the equality λ∗
1(A ∪ E) = λ∗

1(A). By subadditivity, we have

λ∗
1(A ∪ E) ≤ λ∗

1(A) + λ∗
1(E) = λ1(A)

and since A ⊆ A∪E we have by monotonicity that λ∗
1(A) ≤ λ∗

1(A∪E), showing that λ∗
1(A∪E) = λ∗

1(A). To
show the equality λ∗

1(A) = λ∗
1(A\E), we first note that since A\E ⊆ A, λ∗

1(A\E) ≤ λ∗
1(A) by monotonicity.

We can also see that (A\E) ∪ (E ∩A) = A, so by subadditivity

λ∗
1(A) = λ∗

1((A\E) ∪ (E ∩A)) ≤ λ∗
1(A\E) + λ∗

1(E ∩A) = λ∗
1(A\E)

(we know λ∗
1(E ∩A) = 0 because E ∩A ⊆ E). Therefore, λ∗

1(A\E) = λ∗
1(A).

Exercise 4

Exercise: For all δ ∈ (0, 1) we construct a set Cδ in a similar manner to the Cantor set. We start from
[0, 1] and we remove from every remaining interval of the k-th step a middle interval of length δ3−k. Prove
that Cδ is compact and with no isolated points. Prove that it does not contain an interval and prove that
λ1(Cδ) = 1− δ > 0.

Solution: Compactness is easy to show: we take the closed interval [0, 1] and take away countably many
open intervals (which is the same as intersecting with the complement of the interval, which is closed). As Cδ

is a countable intersection of closed sets, and it is bounded, it must be compact. To show that λ1(Cδ) = 0,
we consider that at the k-step, there are 2k−1 intervals remaining, and so we obtain

λ1(Cδ) = 1−
∞∑
k=1

2k−1
(
δ3−k

)
1− δ

2

∞∑
k=1

2k3−k = 1− δ

2

∞∑
k=1

(
2

3

)k

= 1− δ

2

(
2/3

1/3

)
= 1− δ

2
(2)

= 1− δ.

Now, we show that Cδ does not contain an interval. After the k-th step, notice that each of the remaining
2k intervals have an equal length, which is

1

2k

(
1− δ

2

k∑
k′=1

(
2

3

)k′)
=

1− δ

2k
+

δ

3k
−−−−→
k→∞

0

Since the length of all remaining intervals tends to zero as k → ∞, Cδ cannot contain any intervals. A
similar argument shows that Cδ does not contain any isolated points: let x ∈ Cδ and ϵ > 0. Then, since the
length of each interval remaining after step k tends towards zero as k → ∞, there exists a step where the
length of each remaining interval has length < ϵ. x must be contained in some interval, and is at most ϵ
away from the endpoints of this interval (which are also in Cδ), so x is not an isolated point of Cδ.
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Exercise 5

Exercise: Let f : R → R be a measurable function. Prove that f is integrable iff

∞∑
k=−∞

2km({x ∈ R : |f(x)| > 2k}) < ∞

Solution: We will write Ak = {x ∈ R : |f(x)| > 2k}, and Bk = {x ∈ R : 2k < |f(x)| ≤ 2k+1}. Observe
that the family of all Bk is pairwise disjoint, and that Ak =

⋃∞
ℓ=k Bk. As a result, m(Ak) =

∑∞
ℓ=k m(Bk).

Moreover, notice that A =
⋃∞

k=−∞ Ak = {x ∈ R : f(x) ̸= 0}, so
∫
R f dm =

∫
A
f dm.

Proof. (⇒) Assume f is integrable, so
∫
R |f | dm < ∞. We can see that

∞∑
k=−∞

2k1Bk
≤ |f |,

so ∫
R
|f | dm =

∞∑
k=−∞

∫
Bk

|f | dm ≥
∞∑

k=−∞

∫
Bk

2k dx =
∞∑

k=−∞

2km(Bk)

(showing the rightmost sum is finite). Notice that all terms are positive, which allows us to use Fubini’s
theorem for series as follows:

∞∑
k=−∞

2km(Ak) =

∞∑
k=−∞

∞∑
ℓ=k

2km(Bℓ) =︸︷︷︸
Fubini

∞∑
ℓ=−∞

∞∑
k=ℓ

2km(Bℓ) =

∞∑
ℓ=−∞

21+ℓm(Bℓ) < ∞.

(⇐) Assume
∑∞

k=−∞ 2km(Ak) < ∞. Since Bk ⊆ Ak, 1Bk
≤ 1Ak

, and thus

|f | ≤
∞∑

k=−∞

2k+1
1Bk

≤
∞∑

k=−∞

2k+1
1Ak

.

Integrating yields ∫
R
|f | dm ≤

∞∑
k=−∞

2k+1m(Ak) < ∞

as desired.

Exercise 6

Exercise: If f is Lebesgue integrable on [−1, 1], prove that limn→∞
∫ 1

−1
xnf(x) dx = 0.

Solution:

Proof. We shall use the dominated convergence theorem. Define fn(x) = xnf(x). As f is Lebesgue inte-
grable, it must be finite almost everywhere. Thus, we can see that

lim
n→∞

fn(x) = 0 a.e.

(wherever f is finite-valued). Moreover, on [−1, 1], we know |xn| ≤ 1, so |fn(x)| = |xnf(x)| ≤ |f(x)|. By the
dominated convergence theorem, and using the fact that this pointwise limit is 0 a.e., we can see that

lim
n→∞

∫ 1

−1

xnf(x) dx =

∫ 1

−1

lim
n→∞

xnf(x) dx =

∫ 1

−1

0 dx = 0.
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