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Previous works
- Logistic Regression: models binary outcomes 

- Ex: Patient diagnosis (Salahi et al., 2019) 
- Regularization: adding a penalty to prevent overfitting 

- When p fixed and n → ∞, MLE has nice properties (e.g. unbiased) 
- In high dimensions, properties break down for unregularized, L1 and L2 

regularized logistic regression (Candès & Sur, 2018; Salahi et al., 2019) 

(Harris 2021) (Karas 2023)



The Impact of Regularization on High-dimensional Logistic Regression 
(Salehi et al. 2019)

- Need for new method to find performance metrics
- Use CGMT to find a system of six nonlinear equations

- Simplifies to three nonlinear equations under L2 
- Solution allows performance metrics (e.g. MSE) to be calculated
- Ultimately useful when finding reg param (λ) that optimizes performance



Replicating Results from Salehi et al. 

- Points correspond to randomly generated data points
- Lines correspond to the 
- λ = regularization parameter; δ = n / p 

(Salehi et al., 2019)



Bagging Problem

- Bagging: 
- Train classifier on subsets of whole dataset and then aggregate models from each

- Approaches to problem:
- Same approach as Salehi et al. 
- Replica Method from 

Statistical Physics (Loureiro et al. 2022)
- Borrowing from similar setting in linear regression 

(Lamyai, 2014)



Inference from Linear Regression

- Restrictions: 
- Model parameters = 0

→ response variable (y’s) gives no info about predictor (x) 
- Unregularized (λ  = 0)
- Divide into two equal subsets of equal size with some set amount of overlap

- Same setting in linear reg finds single term (η) that 
predicts correlation btwn estimators of I’s 

| I1 ∩ I2 | = c * | I |

I1 I2

|I1| = |I2| = c * n
For constant c ∈ (0,1) 



c (∝size of data subset) over correlation between estimators of I1 and I2 

For p = 250 and  n = 1000 For p = 250 and  n = 2000



Future Questions

- Heavy restraints → more general model in future
- Exploring other approaches that were previously mentioned
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