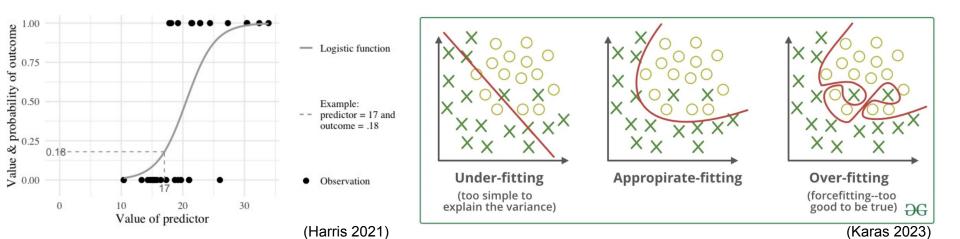
Optimization, learning and high-dimensional macroscopic limits Iris Chang

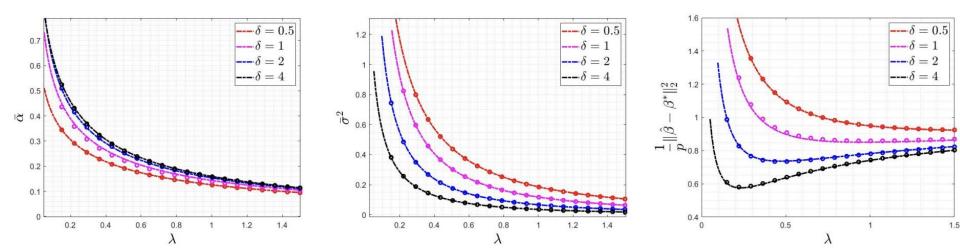
Previous works

- Logistic Regression: models binary outcomes
 - Ex: Patient diagnosis (Salahi et al., 2019)
 - Regularization: adding a penalty to prevent overfitting
- When p fixed and $n \rightarrow \infty$, MLE has nice properties (e.g. unbiased)
- In high dimensions, properties break down for unregularized, L₁ and L₂ regularized logistic regression (Candès & Sur, 2018; Salahi et al., 2019)



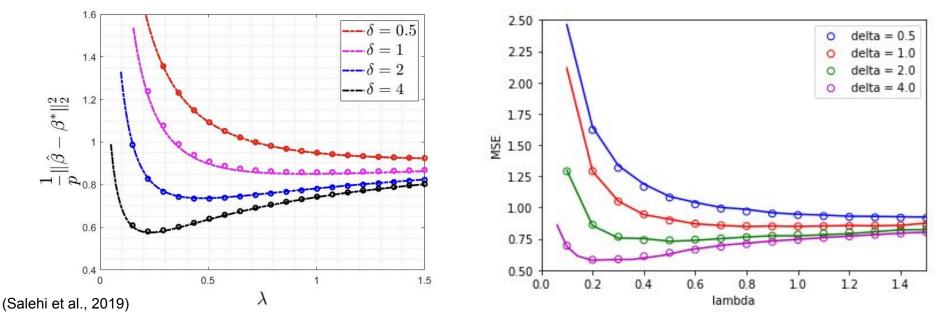
The Impact of Regularization on High-dimensional Logistic Regression (Salehi et al. 2019)

- Need for new method to find performance metrics
- Use CGMT to find a system of six nonlinear equations
 - Simplifies to three nonlinear equations under L₂
- Solution allows performance metrics (e.g. MSE) to be calculated
- Ultimately useful when finding reg param (λ) that optimizes performance



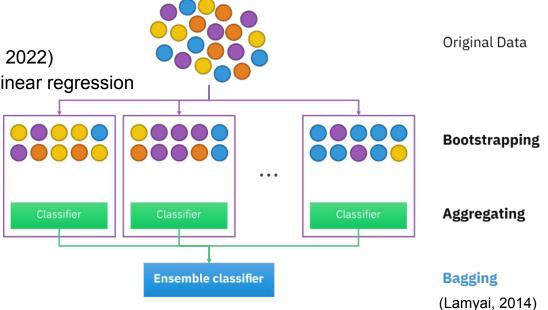
Replicating Results from Salehi et al.

- Points correspond to randomly generated data points
- Lines correspond to the
- λ = regularization parameter; δ = n / p



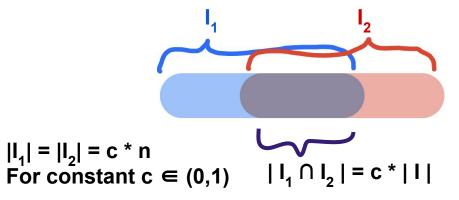
Bagging Problem

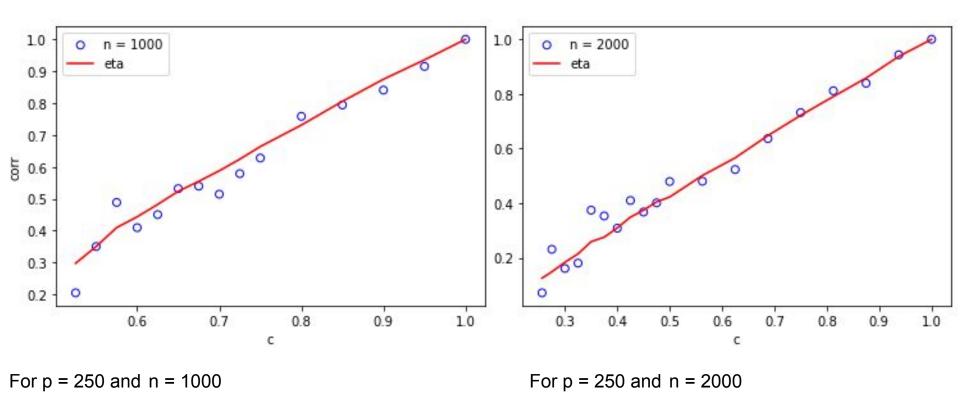
- Bagging:
 - Train classifier on subsets of whole dataset and then aggregate models from each
- Approaches to problem:
 - Same approach as Salehi et al.
 - Replica Method from Statistical Physics (Loureiro et al. 2022)
 - Borrowing from similar setting in linear regression



Inference from Linear Regression

- Restrictions:
 - Model parameters = 0
 - \rightarrow response variable (y's) gives no info about predictor (x)
 - Unregularized ($\lambda = 0$)
 - Divide into two equal subsets of equal size with some set amount of overlap
- Same setting in linear reg finds single term (η) that predicts correlation btwn estimators of I's





c (∞ size of data subset) over correlation between estimators of I₁ and I₂

Future Questions

- Heavy restraints \rightarrow more general model in future
- Exploring other approaches that were previously mentioned

Acknowledgements

Thank you to my mentor Pierre Bellec for his guidance throughout!

This work was carried out as a part of the 2023 DIMACS REU program at Rutgers University, supported by NSF grant CNS-2150186

Works Cited

Emmanuel J Candès and Pragya Sur. (2018). The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression. arXiv preprint arXiv:1804.09753.

Harris JK. (2021). Primer on binary logistic regression. *Family Medicine and Community Health.* doi: 10.1136/fmch-2021-001290

Karas, P. (2023). Under, over and appropriate fitting in logistic regression. L1 (Lasso) and L2 (Ridge) regularizations in logistic regression. Medium . Retrieved from https://ai.plainenglish.io/l1-lasso-and-l2-ridge-regularizations-in-logistic-regression-53ab6c952f15 .

Lamyai, S. (2014). *An illustration for the concept of bootstrap aggregating*. Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Bootstrap_aggregating#/media/File:Ensemble_Bagging.svg.

Loureiro, Bruno, et al. "Learning Curves of Generic Features Maps for Realistic Datasets with a Teacher-Student Model*." *Journal of Statistical Mechanics: Theory and Experiment*, vol. 2022, no. 11, 2022, p. 114001, https://doi.org/10.1088/1742-5468/ac9825.

Salehi, F., Abbasi, E., & Hassibi, B. (2019). *The Impact of Regularization on High-Dimensional Logistic Regression*. https://doi.org/ https://doi.org/10.48550/arXiv.1906.03761