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Abstract

Logistic regression is used to make a prediction between two different outcomes based on a data set.

Typically, when the sample size is much larger compared to a fixed dimension, maximum likelihood esti-

mation is used to estimate the parameters of the model, in which case the estimate has many convenient

properties such as being unbiased. It was shown by [5] as well as [4] that these assumptions do not hold

in the high dimensional regime where the sample size and dimension are proportional. While these two

groups were able to find adequate methods of characterizing model performance in high dimensions, there

is an absence of work on the performance and impact of bagging on high dimensional logistic regression

models. In our case, bagging refers to the method of dividing the larger data set into two or more

overlapping subsets and fitting a logistic regression model on each subset before aggregating the parts

together. This work aims to show a single scalar that would be able to predict the correlation between

the two unaggregated estimates. Drawing from previous results in linear regression and the unbagged

setting, we were able to successfully infer this result.

1 Introduction

Logistic regression is a statistical model that returns a prediction for a binary outcome given a data

set. To use an example, researchers in Indonesia used a logistic regression model to predict swing voters’

choice in the polls based on certain demographic information such as the voter’s age, religion, and education

amongst other factors [2]. In this case, the demographics of “loyal voters” for two candidates were used as

the training data set to determine our logistic regression model which then could be used to predict swing

voters’ choices.

There are many ways of further refining the logistic regression model to better fit the training data set

and therefore make more useful predictions. Regularization is one such technique in which a penalty of

choice is added to the model. This prevents overfitting by limiting the size of the model parameters. In the

case of ridge regularized regression or L2 regularization, for example, the sum of the square of the model

parameters is added to the minimization problem as will be discussed more in depth in the following section.

Typically, maximum likelihood estimation is used to estimate parameter values. When the sample size, n,

is much larger than the model dimension, p, such that n → ∞ for fixed p, the maximum likelihood estimate

(MLE) for the parameters has a number of convenient properties such as being unbiased. However, as we

consider a higher dimensional setting in which n and p are proportional, these properties have been shown

to break down. Particularly, [5] described the performance of the MLE in the unregularized setting, finding

that the MLE is no longer unbiased in the high dimensional regime [5].

Following this, [4] studied the asymptotic performance of regularized logistic regression parameter es-

timation in high dimensions [4]. To do so, they used the Convex Gaussian Min-max Theorem to uncover
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a six equation nonlinear system in six unknowns. Using the solution of this system, various performance

measures of interest (e.g. mean squared error) can be explicitly calculated. In the case of unregularized and

ridge regularized logistic regression, this system can be further simplified to three equations and therefore a

solution of three terms.

After these prior works, we attempt to investigate the impact of bagging on logistic regression. Bagging

is a method commonly used in machine learning in which a model is fit to subsets of a total data set which

are then aggregated into one ensemble model. Similarly to regularization, it helps to prevent overfitting

and provides a more stable model. While there has been work, as described above, on the performance of

logistic regression models in high dimensions under various settings, it remains to be thoroughly explored

on a bagged model. In particular, we will show a single scalar that predicts the correlation between the

estimated parameters of our bagged logistic regression model.

2 Notation and Set-up

The notation will essentially follow that used by [4], with a few modifications and additional terms. All

of these will be described in the following section.

We take a data set of n different (xi, yi) pairs whose relation is defined by β∗ and use our logistic

regression model to calculate an estimate for β∗. To formalize this, let xi ∈ Rp for i = 1, 2, . . . , n be defined

as the vector of p terms corresponding to n terms yi such that yi ∈ {0, 1}. We will take the xi’s to be drawn

i.i.d from a normal distribution with mean 0 and covariance matrix 1
pIp, where Ip is the identity matrix in

p dimensions. Each yi is a binary outcome with probability depending on xi and β∗. It will be defined as a

Bernoulli random variable such that P[yi = 1|xi] = ρ′(xT
i β

∗) for i = 1, 2, . . . , n for ρ′(t) = et

1+et .

The MLE for β∗ denoted as b̂ is given by the following:

b̂ = argmin
b∈Rp

n∑
i=1

ρ(xT
i b)− yi(x

T
i b) (1)

for function ρ(t) = log(1 + et). The estimate b̂ is the minimizer of the negative log likelihood.

The three random variables Z,Z1, Z2 will all be normally distributed with mean 0 and variance 1. The

proximal operator associated with convex function ρ : Rd → R and scalar t > 0 for vector v is defined as the

following:

Proxtρ(·)(v) = argmin
x∈Rd

1

2t
∥v − x∥2 + ρ(x) (2)

As mentioned previously, the six equation system whose solution is used to characterize the performance

of the regularized logistic regression model in the high dimensional regime can be simplified to a system

of three nonlinear equations in an unregularized and L2 regularized model. The minimization problem

corresponding to this is as follows:

b̂L2
= argmin

b∈Rp

1

n
·

[
n∑

i=1

ρ(xT
i b)− yi(x

T
i b)

]
+

λ

2p

p∑
i=1

b2i (3)
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The three equation system has three unknown (σ, α, γ) and is found in Theorem 2 of [4]. It is as follows:

σ2

2δ
= E[ρ′(−κZ1)(καZ1 + σZ2 − Proxγρ(·)(καZ1 + σZ2))

2]

− α

2δ
= E[ρ′′(−κZ1)Proxγρ(·)(καZ1 + σZ2)]

1− 1

δ
+ λγ = E

[
2ρ′(−κZ1)

1 + γρ′′(Proxγρ(·)(καZ1 + σZ2))

] (4)

Here, δ is n
p and κ is defined as ∥β∗∥√

p . The regularization parameter is denoted by λ, and the function

ρ′′(t) = et

(1+et)2 .

2.1 Specific Case

In this paper, we consider the specific case in which β∗ is 0. As a result of this assumption, yi is

independent from xi and distributed as Bernouilli(12 ) as ρ′(0) = 1
2 . Additionally, we will look at the

unregularized case, so we consider the three equation reduction above in (4) with λ = 0.

Due to the restrictions described in the previous paragraph, there are a number of additional simplifica-

tions to (4), yielding the following two equation system:
σ2

δ
= E[(σZ − Proxγρ(·)(σZ))2]

1− 1

δ
= E

[
1

1 + γρ′′(Proxγρ(·)(σZ))

] (5)

In particular, the term κ is zero due to the ∥β∗∥ term (which is zero in this setting) included in its definition.

The regularization parameter, λ, is also zero as we consider an unregularized model. The 1
2 in the first

equation and factor of 2 in the expectation of the third equation of (4) cancel due to ρ′(0) = 1
2 . The solution

(σ, γ) for fixed values of delta of the equations in (5) will be used later to calculate our predictor for the

correlation between parameter estimates.

Considering the application of the bagging method, the data set will be divided into two equally sized

subsets I and Ĩ such that |I| = |Ĩ| = nc for sample size n and some constant c ∈ (0, 1). These two subsets

overlap such that |I ∩ Ĩ| = c|I| meaning the number of observations contained in their intersection is nc2.

In this case, δ will now be defined as |I|
n applying to equations (5) and onward.

We define β̂ to be the estimator trained over observations in I and β̃ to be the estimator trained over

observations in Ĩ:

β̂ = argmin
β∈Rp

∑
i∈I

ρ(xT
i β)− yi(x

T
i β)

β̃ = argmin
β∈Rp

∑
i∈Ĩ

ρ(xT
i β)− yi(x

T
i β)

(6)

Furthermore, the correlation between these two estimators will be defined as follows:

β̂T β̃

∥β̂∥∥β̃∥
(7)

In this paper, we aim to show that the correlation can be predicted by η, a scalar resulting from analysis for
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the same setting in linear regression. η is given as follows:

η = c
E[ρ′(Proxγρ(·)(σG))ρ′(Proxγρ(·)(σG̃))]

E[(ρ′(Proxγρ(·)(σG)))2]
(8)

for (G, G̃) distributed by the bivariate normal with mean

(
0

0

)
and covariance matrix

(
1 η

η 1

)
. As

previously described, the solution for η can be found after solving the two equation system (5) for (σ, γ). It

is important to note also that values of η ∈ [0, 1] if I = Ĩ or I ∩ Ĩ = ∅.

3 Methodology and Results

In order to demonstrate that η predicts the correlation, the solution for η was graphed against a scatter

plot of the values of equation (7) over δ for fixed values of n and p.

In order to plot these empirical results, the xi and yi pairs were randomly generated and then split

according to the specifications above for various values of c. In particular, the first cn observations were

taken to be in subset I and the next cn with nc2 overlap were taken to be in subset Ĩ. This left the last

n(c − 1)2 observations unused. Then, using the sklearn logistic regression classifying algorithm in [1], the

MLE for the model parameters were found for each of the subsets. From this, the correlation was calculated

and then plotted as a scatter plot over the δ’s corresponding to the values of c.

To solve for η, initially a black box equation solver was used to retrieve a solution for the two equation

system in (5). This returned values for σ and γ in terms of δ values. Due to limitations in calculating the

MLE, only values of δ > 2 were considered.

Afterward, an approximate solution for the equation for η was found using an iterative method. Es-

sentially, across a grid of values of δ and their corresponding σ and γ values, the value of η was found,

calculating G, G̃ with a guess value of η. Then this value of η was used to calculate the values for G, G̃ in

the next iteration. This was repeated until the values of η between iterations converged to be within some

value ϵ of one another.

In order to calculate η, several approximations were made. The approximate value for the proximal

operator Proxtρ(·) was found using Newton’s method. Next, to find an approximate value for the expectations

in equation (8), the law of large numbers was used. Specifically, a simple average of the same quantity within

the expectations in equation (8) was taken but over 10,000 trials of G and G̃.

Then, the values of η were plotted over the δ values. Using the procedure described, for p = 250 as well

as n = 1000 and n = 2000 respectively, the following figures were produced.
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(a) n = 1000 (b) n = 2000

Figure 1: The blue points represent empirical calculations for correlation between the two MLE estimates

for the parameters of subsets I and Ĩ. The red line represents η over values of δ defined as |I|
p . In both

figures, p = 250.

4 Conclusion and Future work

This paper investigated a method to characterize the performance of a pair of unregularized maximum

likelihood estimates for a logistic regression model with bagging. As a result, we were able to use results from

[4] and the same setting in linear regression to show a single scalar η that seems to predict the correlation

of the two parameter estimates for the bootstrapped subsets.

While these results demonstrate the fit between η and the correlation of the two parameters, there is not

yet a rigorous calculation explaining why this result appears. In the future, it may be of interest to derive

such a result. One method to do so may be to use the replica method from statistical physics. Previously, [3]

were able to come to a similar result on the performance of high dimensional regularized logistic regression

models as in [4] using the replica trick. This may be one potential method through which an explanatory

calculation may be found.
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