ON SuM COLORING OF GRAPHS

Mohammadreza Salavatipour

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright © 2000 by Mohammadreza Salavatipour

i+l

oh?ﬁoml Library gti?lCam ue nationale
uisitions and Acquisitions et

Bibliographic Services services bibliographiques

Otawa ORY K1A ONG Otiwe ON K14 0N

Canada Canada Your s Votre rélérence

Our s Notre réidrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.
0-612-50369-0

Abstract

On Sum Coloring of Graphs

Mohammadreza Salavatipour
Master of Science
Graduate Department of Computer Science
University of Toronto
2000

The sum coloring problem asks to find a vertex coloring of a given graph G, using natural
numbers, such that the total sum of the colors of vertices is minimized amongst all proper
vertex colorings of G. This minimum total sum is the chromatic sum of the graph, £(G),
and a coloring which achieves this total sum is called an optimum coloring. There are
some graphs for which the optimum coloring needs more colors than indicated by the
chromatic number. The minimum number of colors needed in any optimum coloring
of a graph is called the strength of the graph, which we denote by s(G). Trivially
X(G) € s(G). In this thesis we present various results about the sum coloring problem.
We prove the NP-completeness of finding the vertex strength for graphs with A = 6 and
also give some logarithmic upper bounds for the vertex strength of graphs with small
chromatic number. We also prove that the sum coloring problem is NP-complete for
split graphs. Polynomial time algorithms are presented for the sum coloring of k-split
graphs, Ps-reducible graphs, chain bipartite graphs, and cobipartite graphs.

We can extend the idea of sum coloring to edge coloring and define the edge chromatic
sum and the edge strength of a graph similarly. We prove that the edge sum coloring
and the edge strength problems are both NP-complete for cubic graphs. Also we give a
polynomial time algorithm to solve the edge sum coloring problem on trees, and show
that using the Monadic Second Order Logic we can solve this problem on partial k-trees
with bounded degree in linear time.

=

Acknowledgements

I do not see the completion of my M.Sc program as a personal achievement; there are
many people who have generously helped me along the way. I would like to thank the
people who have supported and encouraged me.

First and foremost, I would like to thank my advisor, Derek Corneil. He is an excellent
advisor and a great researcher. His deep experience, sharpness, and insight in different
areas of graph theory provided me a great source of inspiration. He has helped me with
his great suggestions, good questions, and new ideas whenever I was distracted. This
thesis would not have been possible without his supervision. I also thank Mike Molloy,
the second reader of this thesis, for his helpful comments.

From the very beginning years of my study, I have received great support from my
parents. After being far from my family, and from my wife for a while, I realized that I
love them more than I could imagine it before. I don’t know how to thank my family,
and in particular my mother for her unconditional love. And about my wife, I have no
word to thank her who is the primary reason for my happy life.

For many useful discussions, I would like to thank my fellow graduate students Mo-
hammad Mahdian, Kiumars Kaveh, and Babak Farzad. I can not forget my primary
teachers in university, who directed me to this area of science, Dr. Ebad Mahmoodian
and Dr. Mohammad Ghodsi.

Finally, I thank the members of the department who made the department a great
place to work and study. I also thank the University of Toronto for financial assistance.

ol y
Plste obe (0558 Jmadds @uls

iv

Contents

1 Introduction 1
1.1 Statementof theproblem 1

1.2 Applications and motivation 3

1.3 Notation and definitions, 4

14 Previouswork v i it e e e e e e e 7

1.5 OVeIVIEW o vt ottt e e e e e e e e e e e e e 11

2 General results on sum coloring 13
2.1 Complexity of finding the vertexstrength 13
2.2 Some bounds on the strength of graphs with small chromatic number . . 15
2.3 Complexity of vertex sumcoloring. 19

3 Algorithms for vertex sum coloring 23
3.1 Vertex sum coloring of k-splitgraphs 23
3.1.1 Algorithm for kf-splitgraphs 24

3.1.2 Algorithm for kc-splitgraphs 25

3.2 Vertex sum coloring of Py-reduciblegraphs 26
3.2.1 Max-ISAlgorithm 28

3.2.2 Correctness of the Max-IS algorithm 30

3.23 Analysisofthe Algorithm 35

3.3 Vertex sum coloring of chain bipartite and cobipartite graphs 36

4 Edge sum coloring 40
4.1 Complexity of the edge chromatic sum and the edge strength problems . 41
42 Edgesumcoloringoftrees 42
4.3 Edge sum coloring of partial k-trees with bounded degree 47

5 Concluding remarks
5.1 Conclusion

ooooooooooooooooooooooooooooooooooo

Bibliography

A List sum coloring of partial k-trees

50
50
51

57

Chapter 1

Introduction

1.1 Statement of the problem

A broad and rich area of graph theory, which has received much attention in the last few
decades, is graph coloring. As evidence of this attention we mention the book by Jensen
and Toft [25], in which more than 200 open coloring problems are presented. Generally,
coloring of a graph is an assignment of natural numbers to the elements of a graph, such
as vertices, such that any two adjacent elements have different colors. Finding a coloring
for the vertices of a given graph, using the minimum number of colors, is usually referred
to as vertex coloring, or coloring for short, and this minimum number of colors, denoted
by x(G), is called the chromatic number of the graph. There are many other variations
of graph coloring. We consider the following kind of coloring, which is called the sum

coloring problem:

For a given graph G, find a proper vertex coloring of G, using natural numbers,
such that the total sum of the colors of vertices is minimized amongst all

proper colorings of G .

This minimum total sum of colors is called the chromatic sum of G, and is denoted by
¥(G). We refer to a vertex coloring whose total sum is ¥(G) as an optimum vertex
coloring.

The notion of a coloring in which we want to minimize the total sum of colors first
appeared in 1987 from two different sources. In theoretical graph theory, Kubika [27]
in her Ph.D thesis introduced the chromatic sum of a graph with the above notation,
as a variation of ordinary vertex coloring. The second source of vertex sum coloring
arose from its application in VLSI design. Supowit [36] introduced the optimum cost
chromatic partition (OCCP) problem, which is very similar to the sum coloring problem.

CHAPTER 1. INTRODUCTION 2

1 2 1 1
1 3

1> <2 1> <l

1 2 1 1

Figure 1.1: A coloring of a tree with total sum 12 using 2 colors, and a coloring with

total sum 11 using 3 colors

The OCCP problem asks to find a proper coloring of a graph, using a given set of colors
{c1,¢2,...,¢ck}, such that the total sum of colors is minimized. In other words, this is
the same as the definition of sum coloring with the modification that the set of colors is
a specific given set, rather than the set of natural numbers.

It is interesting to note that these two source articles have each motivated bodies
of research that seem to be unaware of the results arising from the other source. As a
consequence there has been some duplication of results in the literature.

Assume that P is an optimum vertex coloring of a graph G with k colors. Let’s
call the set of vertices having color ¢, C;, for 1 < i < k. Therefore, by definition,
3(G) = X5, i|Ci] and it follows immediately that |C;| > |Ci|, for 1 < i < k. Also, it's
clear that k£ > x(G). One might think that we can obtain an optimum vertex coloring by
finding a proper coloring with x(G) colors and then assigning color 1 to the largest color
class, color 2 to the next largest color class, and so on. However, this does not always
yield an optimum vertex coloring, even for trees. For example any vertex 2-coloring of
the tree in figure 1.1 gives a total sum of 12 whereas the coloring shown with 3 colors
gives a total sum of 11. Therefore, it is not necessarily true that £k = x(G). So what
is the minimum number of colors needed to obtain the chromatic sum of a graph? This
is the parameter we call the strength of G, and will denote it by s(G). It is trivial that
s$(G) 2 x(G).

As an interesting result, it has been proved in [29] that for any fixed k, almost all
trees have strength at least k. This shows that the strength of a graph can be far from
its chromatic number, and as a consequence, the optimum vertex coloring might be far
from the sum coloring achieved using any vertex x(G)-coloring.

In edge coloring problems, we are coloring the edges of a graph, rather than the
vertices, and two edges that share a vertex must have different colors. Similar to the
vertex sum coloring problem we can define the edge sum coloring problem, to be an edge
coloring, using natural numbers, such that the total sum of the colors of the edges of

CHAPTER 1. INTRODUCTION 3

W‘—
. '
'm t' "“.-.-'_
' 2 T 1 ' '
:- o—acp —t bao—m1»>
t ¥ g o v v 4

bbb

Figure 1.2: An example of the over-the-cell routing problem

the graph is minimized. We call this minimum total sum, the edge chromatic sum, and
denote it by £'(G). An edge coloring is called an optimum edge coloring, if its total sum
of colors is ¥'(G). Similar to the vertex strength, the edge strength of a graph is the
minimum number of colors needed to achieve an optimum edge coloring of the graph,
and is denoted by s'(G). Note that there are some graphs for which the edge strength
and the chromatic index are not equal, i.e s'(G) > x'(G). See [17] for such an example.
Edge sum coloring is a more recent notion and, not surprisingly, there are not many
results about it in the literature.

1.2 Applications and motivation

The application mentioned by Nicolosco et al.[31] that motivated their study of the
sum coloring problem is a problem in VLSI design, known as the over-the-cell routing
problem. This is exactly the same problem that lead Supowit [36] to the notion of
the OCCP problem. We are given a set of two-terminal nets that should be connected
electrically. We have a base line on which the nets lie and some parallel horizontal tracks
equally spaced, at distances d = 1,2,3,... from the base line. The connection of two
net terminals, whose positions are given, must be composed of two vertical segments and
one horizontal segment where the horizontal segment must lie on one of the tracks. Note
that no overlapping nets can be routed through the same track (figure 1.2). The goal is
to minimize the total length of wires needed to connect these nets. The total length of
horizontal wires is fixed and is equal to the total sum of distances of two terminals of
the nets. Therefore we have to minimize the sum of the lengths of the vertical wires. It
is easy to see that this is equivalent to the sum coloring problem restricted to interval
graphs.

Another application is given by Kroon et al. [30]. The OCCP problem for interval
graphs is equivalent to the Fixed Interval Scheduling Problem (FISP) with machine
dependent processing costs. In this scheduling problem each job j € J must be executed
during a given time interval (s;, f;). We assume that a sufficient number of machines

CHAPTER 1. INTRODUCTION 4

are available and that each job must be executed by one of the machines. However, the
processing costs are machine-dependent. That is, if job j is executed by machine ¢, then
the associated processing cost is ¢;. The objective is to find a feasible non-preemptive
schedule for all jobs with minimum total processing costs. Other variants of FISP have
been considered in the literature (see references No 1, 11-14, 22, and 23 of [22)).

Bar-noy et al. [2] considered the application of the sum coloring problem to the re-
source allocation problem with constraints imposed by conflicting resource requirements.
Assume that we have a distributed resource allocation system in which the constraints
are given as a conflict graph G, whose nodes represent processors, and the edges indicate
competition on resources. In other words, two nodes are adjacent if the corresponding
processors can not run their jobs simultaneously. The allocation of the resources must
satisfy the following conditions:

e Mutual exclusion: No two conflicting jobs are executed simultaneously.

o No infinite wait: The request of any processor is eventually granted.

The goal is to minimize the average response time. This is equivalent to minimizing the
sum of the job completion times. Assuming some fixed execution time for jobs, this is
exactly the sum coloring problem for the given conflict graph.

For some resource allocation problems, such as the classic dining philosophers, efficient
solutions require an edge coloring of the conflict graph. For this kind of problem, finding
an optimum solution is equivalent to solving the edge sum coloring problem [2].

1.3 Notation and definitions

Our basic notation and terminology reference is [38]. All the graphs we consider are
simple undirected loopless, unless specified otherwise. We denote a graph G with vertex
set V and edge set E by G(V, E). A graph is a multigraph if E is a family, rather than a
set. The edge containing two vertices u and v is denoted by uv. By size of a graph, we
mean the number of vertices of that graph, and is denoted by |G|. Two vertices u and
v are adjacent or neighbors if uv € E. We call the number of neighbors of vertex v, the
degree of v, and denote it by deg(v). The maximum and minimum degrees of a graph
are usually denoted by A and 4 respectively. A graph is called regular if all the vertices
have the same degree, and is called k-regular if this degree is k. 3-regular graphs are
sometimes called cubic graphs. A graph G’(V',E’) is a subgraph of G(V,E) if V' C V
and E' C E. G’ is an induced subgraph of G if it is a subgraph of G and it contains all
the edges uv, such that u,v € V’, and uv € E.

CHAPTER 1. INTRODUCTION 5

Two graphs G(V, E) and G'(V’, E') are isomorphic if there exists a one-to-one and
onto function f : V — V’ such that uv € E if and only if f(u)f(v) € E'. The cartesian
product of graphs G and H, written G x H, is the graph with vertex set V(G) x V(H)
specified by putting (u,v) adjacent to (u',v’) if and only if (1) u = u’ and vv' € E(H),
or (2) v = v’ and uv’ € E(G).

A graph is a complete graph or clique if for any pair u,v of vertices, uv € E. A graph
is empty or an independent set if it has no edges. We denote the complete graph with
n vertices, the path with n vertices, and the cycle with n vertices by K,, P,, and C,
respectively. By w(G) we mean the size of the maximum clique of the graph G. By the
complement of a graph G(V, E), we mean the graph G(V, E') where uv € E' if and only
if uv € E. A vertex having degree one, in a tree, is called a leaf. A vertex of a tree which
is not a leaf is an internal vertez or internal node.

A graph G(V, E) is chordal if it has no induced cycle of size greater than 3. A graph is
a split graph if there is a partition of its vertices into a clique and an independent set. A
set of intervals on the real line can be represented by a graph whose vertex set corresponds
to the set of intervals where two vertices are adjacent if and only if the corresponding
intervals overlap. Such a graph is called an interval graph. If all the intervals have the
unit size then the associated interval graph is called unit interval graph. Clearly both
split graphs and interval graphs are chordal. A matching is a set of edges such that no
two edges in that set share a vertex. A matching is called a mazimum matching if its
size is the largest size amongst all matchings of the graph.

A coloring of a graph G(V, E) is a function f : V — N, where f(v) is called the color
of vertex v, for every vertex v € V. A coloring is called proper if no two adjacent vertices
have the same color. Graph G is k-colorable if there exists a proper coloring of G using
at most k colors. A 2-colorable graph is called a bipartite graph. Similarly, a k-partite
graph is a graph which is k-colorable. Therefore the vertex set of any k-partite graph can
be partitioned into k independent sets. A complete bipartite graph, is a bipartite graph
in which the edge set contains all possible edges between the two parts of the graph. The
chromatic number of graph G is the smallest number & such that G is k-colorable, and
is denoted by x(G).

Similarly, an edge coloring is a function f : E — N, where f(e) is the color of edge
e. A proper edge coloring is an edge coloring such that no two edges that share a vertex
have the same color. A Graph G is k-edge-colorable if there exists a proper edge coloring
of G using k colors. The chromatic indez of a graph is the minimum number & such that
G is k-edge-colorable and is denoted by x/(G). The line graph of a graph G(V, E) is the
graph G'(V’, E'), such that for every e € E there is a node v € V', and uv € E' if and

CHAPTER 1. INTRODUCTION 6

Figure 1.3: A graph and its tree decomposition with width 2

only if the corresponding edges in E share a vertex. Clearly the edge coloring of a graph
is equivalent to the vertex coloring of the corresponding line graph. The coloring number
of a graph G, denoted by col(G), is defined to be the smallest number d such that there
exists a linear ordering < of the vertex set where the back degree of every vertex u. which
is [{v : v < u, uv € E}|, is strictly less than d.

A tree decomposition of a graph G(V, E) is a pair (X, T), where T(I, F) is a tree, and
X = {X:|i € I} is a family of subsets of V, one for each node of T, such that:

¢ U,-e,X; =V.
o for each edge uv € E, there exists an i € I, such that v € X; and u € X..
@ foralli,j,k € I,if j is a vertex in T on the path between i and k then X;NX; C X;.

The width of a tree decomposition (X, T') is defined as max;er | X;| — 1. The tree-width of
a graph G, is the minimum width of (X, T'), over all tree decompositions of G.
A k-tree is defined recursively as follows:

o A clique of size k is a k-tree.

o f T(V,E) is a k-tree and C is a complete subgraph of T on k vertices, then the
graph G’ = (V U {z}, EU {zv|v € C}), where z ¢ V is also a k-tree.

CHAPTER 1. INTRODUCTION 7

Note that 1-trees are exactly standard trees. Any subgraph of a k-tree is called a partial
k-tree. It is proved that partial k-trees are exactly the graphs with tree-width at most &

A well known class of graphs is the class of perfect graphs. A graph G is perfect if
and only if for every induced subgraph H of G, we have x(H) = w(H). An important
subclass of perfect graphs is cographs. G is a cograph if and only if it doesn’t have an
induced P;.

The following results are immediate consequences of the definition of optimum vertex
coloring.

Fact 1.1 Let C be an optimum vertez coloring of G which uses k colors. Let’s call the
set of vertices having colori in C, C;, for 1 <i < k. Then:

LG 2G| =...2|C 21.

2. C; is @ mazimal independent set in the subgraph G — UiZ} C;.
3. s(G)<A+1.

4 S(G=C) =5(G) - V.

5. 8(G—-C,)=s(G)~1.

6. A(G—-C) < A(G) —1.

1.4 Previous work

As we mentioned before, the chromatic sum problem is introduced by Kubika in her
Ph.D dissertation. In [29], Kubika and Schwenk prove the NP-completeness of the chro-
matic sum problem for general graphs. On the other hand, they give a polynomial time
algorithm to find the chromatic sum of trees. Also, for any integer k, they show how to
construct the smallest tree T, whose vertex strength is at least k.

Theorem 1.2 [29] For any integer k, there is a tree of size
1
V2

which needs at least k colors in any optimal vertez coloring of it.

ITel = —=[(2 + V2)* - (2 - V2)*]

As a consequence, they show:

CHAPTER 1. INTRODUCTION 8

Corollary 1.3 [29] For any integer k, almost every tree requires at least k colors in any

optimum vertex coloring of it.

In [11] Erdos et al. continue the study of graphs that require many colors in their
optimum vertex colorings and give some other constructions to make such graphs.

Erdos et. al [37] give some interesting tight bounds on the chromatic sum of a graph in
terms of the number of vertices and edges of the graph. They prove that £(G) < |V|+|E]|.
Also, they show that:

Theorem 1.4 [37] For any connected graph G:

[VBIEN < S(6) < 5081 +1)].

These bounds are tight as they show there exist graphs that attain these bounds.

In [17] Hajiabolhassan et al. consider optimum vertex colorings of graphs which use
the minimum number of colors, i.e optimum vertex colorings with s(G) colors. They
prove a theorem similar to Brooks’ theorem, by showing that s(G) < A if G is neither a
complete graph nor an odd cycle. Furthermore, they improve this bound and show that:

Theorem 1.5 [17] For any graph G:

s(G) < ’.col(G);l-A(G).l.

As far as we know, this is the best bound for the strength of a graph. In that article,
they conjecture:

Conjecture 1.8 [17] For every graph G:

s(0) < (XEEAG)
The conjecture is affirmed for trees and is the best possible bound as proved by Jiang and
West [26], where they show that for every integer k there exists a tree with A = 2k — 2
whose strength is k.

In [31] the sum coloring problem restricted to the family of interval graphs is studied.
The sum coloring problem is NP-complete for interval graphs if the sizes of intervals are
at least 4 (see also reference 16 of [31]). They give an approximation algorithm that can
be used to obtain a lower bound for ¥(G), where G is an interval graph. The idea behind
this algorithm is as follows: Let P be any optimum vertex coloring of G, k be the number
of colors used in P, and C; be the set of vertices of G having color #, 1 < i < k. Also,
let A; be a maximum independent set in G. Clearly, it is impossible to color more than

CHAPTER 1. INTRODUCTION 9

A, vertices with color 1, in any optimum vertex coloring of G. Therefore |C,| < |A)]-
We can call A,, the largest 1-colorable subgraph of G, as well. In general, let A; be
a subgraph of G which is i-colorable, and has the maximum number of vertices among
i-colorable subgraphs of G, for 1 < ¢ < x(G). So we have:

|ICil < [A4]
|C1| +|Ca} < [A,

|ICil +[Ca|+...+ |CX(G)I <|Vi

ICil+1Ca| +...+]Ce| <[V

Therefore, the best case (the case with the minimum sum of colors) is when we can have
|A;| nodes in the first i sets, 1 < i < x(G). In other words, when |C;| = |A;| — |A4i-1]-
This represents the following lower bound on the chromatic sum of a graph:

x(G)
E(G) 2 |Ail + Y (| Al = |Aia).

i=1

Their algorithm computes the values of |A;|, for an interval graph G, using a greedy
method and a property of interval graphs, called the consecutive 1’s property. They also
show that this algorithm gives the exact value of £(G) if G is a proper interval graph,
or more generally, if the size of each interval is at most 3.

On the other hand, there are some similar results on the OCCP problem. Kroon et al.
[30] study this problem for interval graphs and trees. They give a linear time algorithm
for this problem restricted to trees. Also, they show that this problem is NP-complete for
interval graphs, even if there are four different values for color costs, and it is solvable in
polynomial time if there are at most two different values for color costs. Finally, they give
an integer linear program (ILP) formulation of this problem, and prove that the zero-one
matrix corresponding to the constraints of the ILP is perfect, if and only if G x Kjy| does
not contain an induced odd cycle of size 7 or more.

Jansen [22] has studied the OCCP problem for several classes of graphs. He proves
that the OCCP problem for cographs and for graphs with tree-width at most k¥ can
be solved in time O([V| + |E]) and O(|V|logt*! |V]), respectively. The algorithm he
developed for cographs consecutively finds a maximum independent set in the remainder
of the graph, assigns the cheapest color among the set of unused colors, and removes the
independent set from the graph. This algorithm uses the cotree representation of the
cographs, and produces x(G) sets. By Corneil et al. [8] we can find a cotree of a cograph
in linear time.

CHAPTER 1. INTRODUCTION 10

For the case of graphs with bounded tree-width, he uses a dynamic programming
method based on a tree decomposition of the graph. Finding the tree decomposition of
a graph with bounded tree-width can be solved in linear time, as proved by Bodlaender
[7]. Also, he uses the following lemma:

Lemma 1.7 [22] For a graph G(V, E) with constant tree-width, there ezists an optimum
vertez coloring f such that at most O(log |V'|) colors are used.

Let T(I, F) be a tree decomposition of G, and for each node i € I, let Y; be the set of
all vertices in a set X;, with j =i or j is a descendant of i in the rooted tree T'. The
algorithm computes a table ming;, for each node i € I. If m is the number of allowed
colors, then for each coloring f : X; — {1,2,...,m}, there is an entry in the table
ming;, fulfilling:

m
mine{f)=_ {%ﬁ{%x)ﬂ(t)vﬁx‘; c;l{yly € i, F(y) = 3}
In other words, for each coloring f of X;, minci(f) denotes the minimum sum over all
colorings f of Y;, where f and f have the same color for each vertex z € X;. Using the
above lemma, he shows how to compute the entries of the table for each node in time
O(m*+1k?), and therefore the algorithm runs in time O((log |V|)*+!|V|).

In the same article, he considers the ILP formulation of the problem, given by Sen et
al. [35] and shows that the corresponding polyhedron contains only integral 0/1 extrema
if and only if the graph G is a diamond (K, — e) free chordal graph. On one hand he
shows the NP-completeness of this problem on bipartite graphs and also permutation
graphs, and on the other hand he proves that the OCCP problem can be solved for the
complements of bipartite graphs in polynomial time using bipartite matching.

Approximation algorithms for the sum coloring problem are studied in [28], [23],[2],
[3]. In [28] it is shown that approximating the chromatic sum problem within an additive
constant factor is NP-hard. Then, Bar-Noy et al. in [2] prove that the sum coloring
problem can not be approximated within a factor n'=, for any ¢ > 0, unless NP = ZPP.
Also, they prove that finding consecutive maximum independent sets and assigning the
first available color to each gives a 4-approximation to the sum coloring problem. As a
consequence of this theorem, we have a 4y-approximation algorithm for the sum coloring
problem for a family of graphs, whenever we have a y-approximation algorithm for the
maximum independent set problem for that family. Also, they show that their bound is
tight within a factor 2. In other words, they show that there exists family of graphs for
which the above algorithm is at least a 2-approximation algorithm. For bipartite graphs,

CHAPTER 1. INTRODUCTION 11

they prove that the following simple algorithm is a 2-approximation for the chromatic
sum: Consider the following two colorings and take the minimum of them. One is a
2-coloring of it. The other coloring colors a maximum independent set with color 1, and
then 2-colors the remaining vertices. The maximum independent set can be found in
bipartite graphs using a matching algorithm.

In [3] Bar-Noy et al. prove the hardness of approximating of the sum coloring problem
for bipartite graphs. They prove that there exists an € > 0 such that there is no (1 + ¢)-
approximation algorithm for the sum coloring problem for bipartite graphs, unless P=NP.
Also, they improve the previous ratio for bipartite graphs and give a ;—o-a.pproxima.tion
algorithm for bipartite graphs.

Jansen (23] has many approximation results for the OCCP problem. He proves that
there exists no approximation algorithm with ratio O(|V|%%~¢) for the OCCP problem
restricted to bipartite graphs and interval graphs, unless P = NP. On the other hand,
he gives algorithms for bipartite graphs and interval graphs that approximate the OCCP
problem with ratio O(|V/[*®). Therefore, these are the best possible approximation algo-
rithms for the OCCP problem for these classes of graphs. Finally he proves that there is
no algorithm to approximate the QCCP problem with ratio O(|V|'~¢) for permutation
graphs, split graphs, and therefore chordal graphs, unless P = NP.

The only known results about the edge sum coloring problem appear in [17] and [2].
The edge sum coloring problem is introduced independently in both of these articles as
the vertex sum coloring problem restricted to line graphs. Hajiabolhassan et al. in [17)
introduce the notion of edge strength, and similar to Vizing’s theorem for chromatic
index, they prove:

Theorem 1.8 [17] For every graph G, s'(G) < A + 1.

Bar-noy et al. [2] prove that the edge sum coloring problem is NP-hard for multi-
graphs. They consider a special kind of coloring, called compact coloring in which every
edge e with color i has neighboring edges with all colors 1,2,...,i — 1. They prove that
any compact coloring is a 2-approximation of the edge sum coloring problem.

1.5 Overview

The main results of this thesis appear in chapters 2, 3 and 4. In chapter 2 we give some
general results on the sum coloring problem. This includes the proof of NP-completeness
of finding the vertex strength of graphs, which appears in section 2.1. We use the same
technique used by Kubika and Schwenk [29] to prove the NP-completeness of chromatic

CHAPTER 1. INTRODUCTION 12

sum. In the next section, we give some upper bounds on the strength of graphs with
small chromatic number in terms of the size of the graph. By theorem 1.2, the strength
of a bipartite graph, in particular a tree, can be arbitrary large. We show that it can
not be larger than the logarithm of the size of the graph. Finally, in the last section,
we extend the Kubika and Schwenk [29] result about the NP-completeness of the sum
coloring problem and prove that this problem is NP-complete for the class of split graphs.

Chapter 3 provides some algorithms for the sum coloring problem for some classes of
graphs. As an affirmative result, with respect to the NP-completeness result of the last
section of chapter 2, we prove that the sum coloring problem can be solved in polynomial
time if we bound by a constant the degrees of vertices of either part of a split graph. In
the second section, we extend the result of Jansen for OCCP of cographs by giving an
algorithm to solve this problem for a more general class of graphs, which contain cographs,
called Py-reducible graphs. Finally, in the last section we show that the sum coloring
problem can be solved efficiently for chain bipartite graphs and cobipartite graphs.

Chapter 4 deals with the edge sum coloring problem. In the first section, we prove the
NP-completeness of this problem and also the edge strength problem for cubic graphs.
In section 4.2, we give a polynomial time algorithm to find the edge chromatic sum and
an optimum edge sum coloring of a given tree. This algorithm can be extended to find
an optimum edge sum coloring of weighted trees. In the next section, using Monadic
Second Order Logic, we show that there exists a linear time algorithm to solve the edge
sum coloring problem for partial k-trees with bounded degree, for fixed k.

Finally, in the last chapter, we give our concluding remarks and some problems that
are still left open. These problems can be a starting point for future work in this area.

Chapter 2
General results on sum coloring

In sum coloring of graphs, there are two parameters that we are interested in. One is
the total sum of the costs of colors (the chromatic sum ¥(G) of the graph), which we
try to minimize. The other one is the minimum number of colors used in an optimum
vertex coloring, which is the vertex strength, s(G). We can study these parameters from
two points of view: one is from the mathematical aspect, in which we can give the exact
value or at least some bounds for these parameters. The other is from the algorithmic
aspect, in which we analyze the complexity of computing these parameters.

In this chapter, we look at these parameters from both of these points of view. The
first section proves that there exists no polynomial time algorithm that finds s(G) for
graphs with A < 6, unless P = NP. In the second section, we show that although
the vertex strength of graphs with small chromatic number might be much larger than
their chromatic number, there are some logarithmic bounds in terms of the size of the
graph for this parameter. Finally, we improve the NP-completeness result of Kubika and
Schwenk [29] for computing the chromatic sum, by proving that it is NP-complete even
for the restricted class of split graphs.

2.1 Complexity of finding the vertex strength

Since the sum coloring problem seems no easier than the chromatic number problem,
one can expect that finding the vertex strength is NP-Hard. We prove that in fact it is
NP-Hard to find the vertex strength even for a graph with A = 6.

Our proof is very similar to the proof of Kubika and Schwenk {29] for proving the
NP-completeness of finding the chromatic sum. We give a reduction from the vertex
3-coloring problem restricted to the graphs with maximum degree 4.

13

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 14

G GXK,

Figure 2.1: A graph G and the cartesian product G x K3

The instance and the question of vertex 3-coloring problem is stated as:
Instance: A graph G with maximum degree 4.

Question: Is G 3-colorable?

It is well known that the above restricted version of vertex coloring problem is NP-
complete even for the class of planar graphs {15]. We state the vertex strength problem
restricted to the class of graphs with maximum degree 6 as:

Instance: A graph G with maximum degree 6.

Question: Is s(G) < 3?

Theorem 2.1 The vertez strength problem restricted to the class of graphs with maxri-
mum degree 6 is NP-Hard.

Proof: We are going to reduce the vertex 3-coloring of graphs with maximum degree 4
problem to the vertex strength of graphs with maximum degree 6 problem. Consider an
instance of the vertex coloring problem. Let G(V, E) be the graph of this instance. We
want to know if x(G) < 3.

Construct the graph G'(V’, E’) as follows: Let G,,Gz,G3 be 3 copies of the graph
G, and let v; be the vertex of graph G; which corresponds to vertex v of the graph G.
Let V! = U‘;?:l V;, where V; is the vertex set of G;. Put all the edges of each G; in E'
(1 £1<3). Also, for each vertex v € G, add the edges {v,v2, vyv3, v2u3} to E'. In other
words, G’ is the cartesian product G x Kj. See figure 2.1.

Since the degree of each vertex in G is at most 4, and each v; € G’ is connected to
two more vertices, therefore the maximum degree of G’ is at most 6. It’s trivial that we

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 15

can construct G’ in polynomial time. Now we claim that:
x(G) £3+=s(G")=13.

First suppose that s(G') = 3. It means that there is an optimum vertex coloring of
G’ in which just 3 colors are used. Since G is a subgraph of G, this coloring induces also
a proper 3-coloring for G. Therefore x(G) < 3.

Now assume that x(G) < 3. Therefore we can color G, with 3 colors, independently.
To obtain a proper 3-coloring of G, we use the same partition of vertices of G, for G; and
G3, with the modification that the color of the j’th class of G;, is (i + j — 2 mod 3) + 1,
instead of j. Thus each G; (1 < i < 3) is colored with colors 1,2,3, and also this is a
proper coloring of G'. It’s not difficult to see that this is an optimum vertex coloring
for G'. This follows since each complete subgraph of size 3 of G’, which contains the
corresponding vertices of copies of G, requires at least 3 colors, in any proper coloring of
G'. In this coloring each of these complete subgraphs are colored with colors 1,2, 3, which
clearly gives the least possible sum of colors. Thus this is an optimum vertex coloring of
G’, and clearly uses the least possible number of colors. Therefore s(G') = 3. []

Using this method and by reduction from k-color problem, for k£ > 3, we can prove
that:

Corollary 2.2 For a given graph G, it is NP-complete to determine if s(G) < k, for
any fized k > 3.

We don’t know the time complexity of deciding if the strength of a given graph is
equal to 2, but we expect it to be NP-complete.

2.2 Some bounds on the strength of graphs with
small chromatic number

The notion of vertex strength of graphs has been studied by Erdos [11], Kubika and
Schwenk [29], and Hajiabolhassan et al. [17]. It’s not difficult to see that s(G) < A +1.
Hajiabolhassan et al. [17] give an analogous theorem to Brooks’ theorem, for the vertex
strength of a graph:

Theorem 2.3 [17] Let G be a connected graph. Then s(G) = A +1 if and only if G is
the complete graph or an odd cycle.

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 16

This theorem implies Brooks’ theorem. Also, they improved the above bound to
[ﬂgziﬁ@-], where col(G) is the coloring number of G. (theorem 1.5).

It is well known that aside from regular graphs, x(G) < col(G) < A. They conjec-
tured that we can replace the coloring number in the above theorem by the chromatic
number. This conjecture is true for trees and follows immediately from the above the-
orem and the fact that the coloring number of every tree is 2. This bound is sharp for
trees as proved by Jiang and West [26]. However, the conjecture is still open even for the
class of bipartite graphs.

Here we prove that for the class of graphs with chromatic number at most 4, the vertex
strength is in O(logn). In particular we prove that, for bipartite graphs s(G) < log,n,
for tripartite graphs s(G) < 2log,(an + 1) where & = /2 — 1, and for graphs with
chromatic number at most 4, s(G) < 4log,(8n + 2), where 3 = 2% — 1. These bounds
are interesting since in many cases, such as complete bipartite graphs and regular graphs
with high degree, they are better than the only known bounds. Remember that the
chromatic sum problem restricted to bipartite graphs is NP-complete [3]. Moreover, we
prove that our bounds are sharp. In particular, we prove that for any k, there exists a
tree whose strength is k and has at most o vertices, where @ < 2+ v2. This means that
the order of the strength of trees captures the upper bound for the strength of bipartite

graphs.
Theorem 2.4 If G is a bipartite graph, then:
8(G) < log;n.

Proof: Assume that G is a bipartite graph and s(G) = s. It’s trivial that s > 2. Ifs =2
then there is nothing to prove. So assume that s > 2. Let P be any optimum vertex
coloring of G using s colors. Call the set of vertices having color i in this coloring C;,
1 <i<s. Itis clear that |Ci| > |Ciqa| 2 1, 1 €1 < s. We use the following two lemmas
in our proof:

Lemma 2.5 For any three consecutive class of colors C;,Ciy1,Ciya of coloring P, where
1 <i<s-2 we have:
ICil 2 [Cis1] + 3|Cisa] + 2.

Proof: Let G’ be the induced subgraph of G on the vertex set C; U Ci4; U Ciy2. Note
that G’ is also bipartite. Thus we can recolor it with two colors ¢ and ¢ + 1. The sum of
colors of the vertices of G’ in this coloring is at most

ICLE Gl +1Cosly 41101+ Conl + Gin

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 17

Note that by this recoloring we obtain another proper coloring of G using s — 1 colors.
Because by this recoloring we can reduce the number of colors used in the coloring of G,
and since s is the minimum number of colors in an optimum sum coloring of G, we must

have:

. . . . Cil + |1Cisa| + |C;
i1CH + G+ DICint| + G + D)Cinal < i(ICH + [Cornl + [Cigal) + || ELHCiral # 1Ol

LIC':'I +[Cisa| + [Cisal]
2

= |C£+1| + 2|C.‘+2| <
=> |Cis1] + 3|Cisa| + 2 < |Cil-

Lemma 2.8 For every color class i of the coloring P, such that i < s — 1, we have:
|Ci| > 25—,

Proof: We have at least one vertex of each color. Therefore [Cs] 2 1 and |C,—1| 2 1. It
follows from the previous lemma that |C,_2| = 6 and |C,_3| = 11. Now we use simple
backward induction. The base is for s — 2 and s — 3, and the lemma is correct. Assume
that ¢ < s — 4, and Ciy > 2°7! and Ciyz > 272, So:

lCtI 2 lCi+ll +3le+2| +2 2 2“"'-1 + 3 % 28-—3'-—2 +2> 2'_".

The total number of vertices in G is equal to the sum of the number of vertices of C;,
for 1 <1 < s. Therefore:

8 -3 [
n=Y |C|>Y 2 +6+1+1>1+) 2 =2

i=1 i=1 i=1

= 2'<n=>s<logn.

Note that we can do better in lemma 2.5 and prove that:
$
ICi| 2 |Cir] +3|Cira] +1+2 Y |Cjl.
j=i+3

Also we can find better lower bounds for the size of C; by solving the recursive relation
of lemma 2.5, but this doesn’t change the final bound for s more than a small constant
factor, and therefore, the strength will be in O(log n).

For the case of graphs with chromatic number 3 or 4, we can find similar bounds. Let
G be a graph whose strength is greater than its chromatic number. Using the technique
of lemma 2.5, we can easily prove the following inequalities for the size of color class Cj:

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 18

Lemma 2.7 For the graph G, where s(G) > x(G):
o If x(G) =3 then : |Ci| 2 |Cisa| +2|Ciya| + 1.
o if x(G) = 4 then : |Ci| 2 =}|Cis1] + §|Cisal + [Cissl + |Cisu] + 1.

We know that |C,—;| > 1, 0 £ j < 3. By solving the recursive relation for |C;| in lemma
2.7, we obtain the following bounds:

Lemma 2.8 For the graph G, where s(G) > x(G):
o If X(G) =3 then: |Ci| > 2°F, fori < s—3.
o If x(G) =4 then: |Ci| 2 2"4.“, fori <s—4,.

Therefore, for the case x(G) = 3 we have:

a—4 u_
n=YICI2 T+ 3 2% > (3VE—4)+ 32 > (3vE-4)+ oL
i=1 i=1 i=1 \/5-1

Let @ = V2 — 1. Since a(3v2 — 4) < 1, therefore:
an +1 > 2f = log,(an + 1) > ;.
Hence:
Theorem 2.9 For a graph G, where x(G) = 3, we have:
8(G) < 2logy(an +1)
where @ = 2 — 1.

Similarly, if x(G) = 4 then by lemma 2.8:

=5 —i 2{-_1
n_Z|C[>7+Z‘) 227- =0—-L
i=1 i=1 i=1 2t -1

Therefore:
Theorem 2.10 For the graph G, where x(G) = 4, we have:
5(G) < 4logy(Bn +2)

where 8 =2t-1.

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 19

Unfortunately, we couldn’t use this method to obtain a general bound in terms of n
for the strength of k-partite graphs, for fixed k, but we guess that there exists a similar
bound for the case of k-partite graphs.

Conjecture 2.11 If G is a graph where x(G) < k, for some fized k, then s(G) €
O(logn).

Now we prove that the bounds we have given are tight. To do so we show that for
any fixed k, there exists a tree whose strength is k, such that £ € ©O(logn), where n
is the number of vertices. We use the same family of trees that Kubika and Schwenk
introduced in [29]. They showed how to construct a tree T which is the smallest tree
whose strength is at least k, £ > 3. They proved that the number of vertices of this tree
is:

1
Tl = —=[(2 + V2)F! = (2 - V2)F!].
Let a = 2 + V2. Therefore:
a*-! logn + 1
= < — k-1 —21<k-1.
n |Tk|_\/§=>\/§n$a = loga <k-1

Since ﬁ; > 0.56, we can say:
k > 0.56logn + 1.25 => k € O(logn).
Hence, we’ve proved that:

Theorem 2.12 For any given k, there ezist a tree whose strength is k and whose number
of vertices is in O(2F).

2.3 Complexity of vertex sum coloring

Finding the chromatic sum or finding an optimum vertex coloring of a graph, seems to
be no easier than the ordinary vertex coloring. Kubika and Schwenk [29] proved that the
vertex sum coloring problem is NP-complete for arbitrary graphs. On the other hand,
there are some classes of graphs where the chromatic number can be found in polynomial
time, and sometimes very easily, whereas finding their chromatic sum is NP-complete.
Interval graphs are such a family [31], [16].

In this section we prove that the vertex sum coloring problem is NP-complete for
the class of split graphs, a subclass of chordal graphs. Therefore, our result proves the
NP-completeness of the problem for the class of chordal graphs, as well. Also, since

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 20

the OCCP formulation is a generalization of the one we are using, our NP-completeness
result implies Jansen’s result, for the class of split graphs. Note that the ordinary vertex
coloring problem can be solved in polynomial time for the class of chordal graphs. This
is another example of a class of graphs, where vertex coloring is in P, whereas vertex sum
coloring is NP-complete.

Recall the definition of split graphs from section 1.3. Split graphs are both chordal
and cochordal, as follows from the following theorem:

Theorem 2.13 [13] A graph G is split if and only if G and G are chordal.

We prove the NP-completeness of the sum coloring problem for split graphs by re-
duction from the ezact cover by 3-sets problem. The instance and the question of this
problem can be stated as follows:

Instance: Set X with 3¢ elements, and a collection C of 3-element subsets of X.

Question: Does C contain an exact cover for X? In other words, is there a subset
C’ C C, such that every element of X occurs in exactly one member of C’ ?

This problem is known to be NP-complete [15]. To prove the main result of this
section, first we state the instance and the question of the chromatic sum problem:

Instance: A graph G, and a positive integer k.
Question: Is it true that £(G) < k?

Note that if there exists a polynomial time algorithm for the above problem, then
there exists a polynomial time algorithm, which can find the exact value of £(G).
First we prove a general result for split graphs.

Lemma 2.14 If G(CU I, E) is a split graph, where C is the complete part and I is the
independent part, and |C| = nc and |I} =ny, then s(G) < nc +1.

Proof: Consider an optimum vertex coloring of G. Since C is a clique, all vertices in C
must have different colors. Let i be the smallest positive number such that none of the
vertices of C have color i. In this case, no vertex in I can have a color greater than i,
otherwise we can simply change the color of that vertex to i. So the only colors (possibly)
used in [are 1,2,...,i. It follows that there can’t be any color greater than n¢ +1 in
C, otherwise there is some color i+ z (1 < < n¢ —1+1) that is not used in C, and we
can simply change the color greater than nc + 1 to i + z. |

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 21

Corollary 2.15 There is an optimum vertez coloring of G such that the colors used in
that coloring are from the set {1,2,...,nc + 1}.

We state the main result of this section in the following theorem.
Theorem 2.16 The chromatic sum problem is NP-complete for the class of split graphs.

Proof: It is not hard to see that the chromatic sum problem is in NP, since we can
easily verify in polynomial time whether a given coloring is proper or not, and if its total
sum of colors is less than k.

To prove the completeness, suppose that we are given an instance of the Ezact
Cover by 3-sets problem. We have the set X = {z,z3,...,23,}, and collection C =
{e1,¢2,..-,¢m}, and we want to know if there exists a collection C’, such that each ele-
ment z; € X, occurs exactly once in C’. Construct the split graph G(V, E) as follows:
for each z; (1 £ 1 < 3q) create vertex v;;, and for each ¢; (1 < i < m) create ver-
tex v, in G. Therefore V = {vz,,vz,, ..., V2 Ve; 1 Veys - - - s ¥, }- For any two non-equal
i,j € {1,2,...,m}, put an edge between v.; and v,,. Also, put an edge between v, and
ve,, if and only if z; € ¢;. Denote the set of vertices {vz,,vz,,...,vz,} by Vx, and the
set of vertices {vc,,Vey,. .-, Ve }, DY Ve

We assume that m > ’-(3‘3:—51, otherwise we can add some dummy vertices to the part
Ve, and connect them to all the vertices in V¢, and in Vx. We claim that:

£(G) = %[m(m +1) + 3q(q + 1)] <= there exists such a C".

It follows from the construction of G, that it is a split graph, since V¢ is a clique, and
Vx is an independent set.

Assume that there exists such a C’. Therefore, there are g verticesin V¢, v, va,. .., v,
such that v; is not adjacent to v;;, vi2,viain Vx, and v;; #Fovnifi#kand 1 < 5,1 < 3. So
we can color G as follows: assign color ¢ to the vertex v; (1 <i < ¢), and to the vertices
in Vx that are not adjacent to it, which are v;;, v;2, v;3. Assign colors g+ 1,...,m to the
rest of the vertices in V¢. Call this coloring A. Let § = }[m(m +1) + 3¢(q + 1)]. First
of all, it is clear that A is a proper coloring and the sum of this coloring is equal to S.
We show that there can’t be any coloring with a total sum less than S.

Let P be an optimum vertex coloring of G, such that color 1 (1 < i < m + 1)
is not used by any vertex in V. By corollary 2.15, the set of colors used by V¢ is
{1,2,...,i—-1,i+1,....m+1}.

Lemma 2.17 Ifi < q, then the total cost of the coloring P, is at least:

m(m+1) +m—i+l+3'('-1)

3 5 +3i(q—1+1).

CHAPTER 2. GENERAL RESULTS ON SUM COLORING 22

Proof: The cost of colors used by vertices in V¢ is clearly 211‘2;!1 +m—i+1. Consider
the arrangement of vertices of Vi, in the order of their color value vy, v,,...,v,. The
only vertices in Vx that can have color 1, are those three vertices that are not connected
to v;. Similarly, for any color j < i, there are only three vertices in Vx that can have
color j. Thus for any color j, (1 £ 7 <t ~—1), there are at most three vertices in Vx that
can have that color, and the rest of the vertices in Vx must be colored with color :. The
total sum of colors is obtained by a simple calculation.]

lete L=m-1+1+ 1'-('2;9- + 3i(q — i + 1). Consider the coloring P, and assume
that i < ¢. Since m > ga%;-_s)’ therefore L > w. Thus, the sum of the coloring P is
more than S. Now, let’s assume that i > q. So all colors 1,2,...,q are used by vertices
in Vc. In the best case, for the coloring of Vx, there are three vertices with color j, for
each 1 < j < g, and for the coloring of Vg, just colors 1,2,...,m are used. The sum of
this coloring is exactly S and can be obtained only if the vertices of Vx can be colored
in this way, equivalently, there is a collection V5 C V¢, such that |V4| =g, and Vi is a
vertex cover for Vx. This proves that the sum of any coloring other than A is more than
S, and we can obtain A only if there exists such a coveriug.

Chapter 3
Algorithms for vertex sum coloring

The last chapter provided some theoretical results on the strength and chromatic sum
of a graph. In this chapter we give some algorithms to solve the sum coloring problem,
for some special classes of graphs. In contrast with the result of the last section of the
previous chapter, in the first section we give an algorithm to solve the sum coloring
problem of split graphs with some degree bounds. Also, we extend the result of Jansen
on cographs, and give a polynomial time algorithm for a more general class of graphs,
called P;-reducible graphs, which contains the class of cographs. Recall that the sum
coloring problem is NP-complete for the important class of bipartite graphs. Therefore,
it is interesting to consider restrictions on bipartite graphs for which we can obtain a
polynomial time algorithm for the sum coloring problem. In the last section, we consider
chain bipartite graphs and cobipartite graphs and give polynomial algorithms for each
class to find an optimum sum coloring.

3.1 Vertex sum coloring of k-split graphs

In the last section of the previous chapter, we showed that for any split graph G(CUI, E),
we have s(G) < n¢ + 1, where nc is the size of the clique part of G. Since C is a clique,
it is trivial that s(G) > n¢. The following lemma which holds for any split graph will be
used later in the design of algorithms for sum coloring of some subclasses of split graphs.

Lemma 3.1 For split graph G(C U I, E), where |C| = nc and |I| = ny, we have:
(i) £(G) < 2elzetl) 4 o 4ny.
(ii) If s(G) = nc +1 then £(G) = 2ict) 4 np 4 ny,

Proof: (i) Consider the vertex sum coloring of G in which all of the vertices of /
have color 1, and the vertices of C are colored by colors 2,3, ...,n¢c + 1. It is trivial that

23

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 24

this is a proper coloring and the total sum of colors is

nc(nc +1)
2

(ii) If s(G) = n¢ + 1 then there are nc + 1 vertices such that the set of colors of these
vertices is exactly {1,2,...,n¢ + 1}, and the total sum of the colors of the other vertices

+ nec +ny.

is at least n; — 1. Therefore:

2
(nc +1)(nc +)+n _ 1= Relnotl)

£(G) 2 5 ! 5

+nc +n;.
By part (i) £(G) < 1“—"‘2&“1 + n¢ + ny. Hence: £(G) = M"T‘"‘-'-ll + n¢ + n; as required.
[

By theorem 2.16 we see that the vertex sum coloring problem is NP-complete for the
class of split graphs, and as a consequence, for the class of chordal graphs. The natural
question that comes to mind is: for which classes of chordal graphs can we solve the
vertex sum coloring problem efficiently ? As we mentioned in section 1.4 the vertex sum
coloring problem is in P for proper interval graphs. Here we study some restrictions of
split graphs where the degree of each vertex in the independent set or in the clique part
is bounded.

Definition 3.2 A split graph G(C U I, E), where C is a complete subgraph and I an
independent set, is a k-split graph if the degree of each vertez is bounded by k. It is called
a kr-split graph if the degree of each vertex of I is at most k. It is a ko-split graph if the
degree of each vertez of C is at most k.

From the definition, it follows that a graph is k-split if and only if it is k;-split and
also kc-split. Here, we give polynomial time algorithms to find the chromatic sum and
also an optimum vertex sum coloring of k;-split and kc-split graphs, for fixed k.

3.1.1 Algorithm for k;-split graphs

Let G(CUI, E) be a k;-split graph where |C| = n¢, |I| = n;. By lemma 2.14 and the fact
that C is a clique of size n¢, we have: n¢ < $(G) < n¢ + 1. Lemma 3.1 gives the exact
value of £(G) and its proof gives an optimum vertex coloring for the case $(G) = nc +1.

Now suppose that $(G) =nc. We denote the set of neighbors of a vertex ¢ € C that
are in set I by Ny(c). Let P be an optimum coloring of G with n¢ colors. Clearly C is
colored with colors 1,2,...,n¢c. Let v, be the vertex of C that has color ¢ in P. The
set of vertices in / that have color 1 are exactly those vertices that are not connected

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 25

to v, i.e the color of vertices in Ny(v.,) is at least 2. Among them, those that are not
connected to v,, have color 2, and the remainder have color at least 3. In general, the
number of vertices having color greater than i in /, is:

|NI(U¢:1) N Nr(v,)...N N[(v.,i)l.

Note that since the degree of each vertex in [is bounded by k, no vertex in I has a
color greater than k£ + 1 in any optimum vertex coloring of G. It can be verified that the

total sum of colors in [is:
k+1

> [{v € Ile(v) 2 i}l.

=1

There are n; vertices in I that have color greater than or equal to 1. Let:

k
S = |N1(ve,)| + [Nr{ve,) N Ni(ve)l + .. - + | n Ni(ve,)l.

i=1

Therefore, the total sum of colors in [is n;+ S and the total sum of colors of coloring
P is:
ne(nec +1)
9

-

+nr+S.

Therefore, to find an optimum vertex coloring of G, using n¢ colors, we must minimize
the term S. In other words, the vertices v, ,vq,..., v, should be selected in such a way
that the sum S is minimized amongst all possible assignment of colors 1,2,...,nc to
the vertices of C. We can simply consider all permutations # with k elements, such
that each element is a vertex of C, and compute the value of S for each permutation by
assigning color i to the vertex v, of C, and then taking the minimum over all values of
S. The number of such permutations is O(nc*). The chromatic sum of G is the minimum
between this value and the sum of the optimum vertex coloring of G using n¢ + 1 colors.
Therefore, we have proved the following theorem:

Theorem 3.3 Let G(C U I, E) be a kg-split graph, for fized k. Then the chromatic sum
and also an optimum vertez coloring of G can be computed in O(ncF), where ng =|C|.

3.1.2 Algorithm for ko-split graphs

Let G(CUI, E) be a k¢-split graph, where |C| = n¢ and |I| = ny. Again, if s(G) = nc+1
then we know the exact value of £(G) by lemma3.1. Assume that s(G) = n¢ and consider
an optimum vertex coloring of G, called P. Let v, be the vertex in C that has color 1 in
P. Clearly every vertex in I — Ny(v,,) has also color 1. We show that no vertex in Nj(v,)
can have a color greater than k + 1. Otherwise, let v, be a vertex in N;(v,,) with color

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 26

z, such that k + 1 < £ < n¢. Therefore there exists a color y such that y < k+ 1 andy
has not appeared on any vertex in Ny(v,,). Let v, and v, be the vertices of C having
colors z and y, respectively. By exchanging the colors of v., and v., we can assign color
y to vr. This exchange reduces the total sum of the colors of P, which is a contradiction.

So, to find an optimum coloring of G, using n¢ colors, we select one of the vertices of
C, call v,,, and assign color 1 to it and to all vertices in I — Nf(v,,). Then we consider
all possible assignments of colors 2,3, ...,k + 1 to the vertices of Ny(v,,). Note that the
degree of v, is at most k. Since k is fixed, there are constant number of such assignments.
Also, for each assignment of colors to the vertices in N(v.,), we have to find a coloring
for the uncolored vertices of C such that is feasible to the coloring of Ny(v.,). To do
so we construct a bipartite graph G'(X U Y, E’), such that X = {z,,22,...,2n,1},
Y = {y2,¥3,.- - ¥r+1}, and z;y; € E’ if and only if there is no edge between the ith
uncolored vertex of C and the vertex in Ny(v.,) with color j. It’s not difficult to see that
using a bipartite matching in G’ that covers all the vertices in Y (if there exists such a
matching), we can find those vertices of C that will have colors 2,3,...,k + 1, and then
color the other vertices of C with colors k42, ..., n¢ arbitrarily. By taking the minimum
between the total sum of the colors of each of these colorings, we find the sum of the
optimum coloring using n¢ colors. Finally, we have to take the minimum between this
amount and the total sum of the coloring using n¢ + 1 colors.

Finding a maximum matching in G’ can be done in time O(n¢), by applying the
augmenting path algorithm k times. Therefore, for each assignment of colors to the
vertices in Nr(v,,) we spend O(nc) time to complete the coloring. Also, at the first
stage, there are nc choices for selecting the vertex v,. Thus, overall we spend O(nr%) to
find the minimum sum of colors between all colorings using n¢ colors.

Theorem 3.4 If G(C U I, E) is a kc-split graph, for fized k, then the chromatic sum
and also an optimum vertez coloring of G can be computed in O(n¢?), where |C| =ne¢.

Corollary 3.5 The chromatic sum of k-split graphs can be computed in time O(nc*).
Proof: Since any k-split graph is a k7-split and a k¢-split graph, the result follows from
theorems 3.3 and 3.4. ®

3.2 Vertex sum coloring of P;-reducible graphs

Cographs were rediscovered several times and under different names and definitions,
which are all equivalent. Some of these names are: D*-graphs, Hereditary Dacey graphs,

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 27

and 2-parity graphs. Many problems that are NP-complete for arbitrary graphs have
polynomial time solutions, when restricted to the class of cographs. Most of these algo-
rithms use the following recursive definition of cographs:

Theorem 3.6 Let G(V, E) be a graph
1. If|V| =1, then G is a cograph.
2. If G\(W, E\) and Gy(V,, E;) are cographs, then G(V, U V,, E, U E,) is a cograph.

3. If G\(Wy, Ey) and G3(Va, E;) are cographs, then G = (Vi U Vo, E, U E, U {zy|z €
Wi,y € V2}) is a cograph.

The operation for making G from G, and G, in the second part of the theorem, is
called union, and the operation in the third part, is called join. We can also replace the
third operation in this theorem with a complement operation.

So a cograph is a graph that can be obtained from single vertices by a finite sequence
of union and join operations.

Jansen [22] gives an algorithm for solving the OCCP problem for cographs. Clearly,
we can solve the sum coloring problem for cographs using this algorithm. We extend this
result by giving a polynomial time algorithm for finding the optimum vertex coloring of
the class of P;-reducible graphs, which is a superclass of cographs. P,-reducible graphs
were introduced by Jamison and Olariu [19] as a generalization of cographs:

Definition 3.7 A grapk G is Py-reducible if every verter belongs to at most one P,.

Our result is interesting since Py-reducible graphs form a proper superset of cographs
and a proper subset of permutation graphs, and by Jansen [22] the QCCP problem is
NP-complete for permutation graphs. As far as we know, the time complexity of the
sum coloring problem is not known for permutation graphs, but we expect it to be NP-
complete.

Similar to cographs, P;-reducible graphs have also a recursive definition. Before giving
this definition as a theorem, we define another type of operation on graphs.

Definition 3.8 Let G(V, E) be a graph such that two adjacent vertices b and c in V
are each adjacent to all other vertices in V. We define the add tail operation on G, by
connecting an additional vertez a to b and an additional vertez d to c. The resulting
graph is

G’ =(V U {a,d}, EU {ab, cd}).

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 28

Jamison and Olariu [19] proved the following theorem :

Theorem 3.9 G is a Ps-reducible graph if and only if it can be obtained from a single
vertez by a finite sequence of union, join and add tail operations.

For every class of graphs that has a recursive definition using some predefined opera-
tions, (like cographs and Py-reducible), there is a natural way of associating a tree, whose
nodes correspond to the operations used in constructing the graph, and whose leaves are
precisely the vertices of the graph. We call the corresponding tree of cographs, a cotree,
and the corresponding tree of P;-reducible graphs, a pr-tree. If v is an internal node of a
pr-tree, we call the subgraph induced by the leaves of the subtree with root v, Gy(,). For
the pr-tree T of graph G, an internal node v is labeled union, join or add tail according
to the following rule:

union iff G, is disconnected
label(v) = { join iff Gy is disconnected
addtail otherwise.

Corneil, Perl, Stewart [8] give a linear time recognition algorithm for cographs. If G
is a cograph, this algorithm also gives the cotree of G. Also a linear time recognition
algorithm for P,-reducible graphs is in Jamison and Olariu [20] which also produces the
corresponding pr-tree.

For our problem, we assume that a P;-reducible graph G with its pr-tree is given and
we want to find an optimum vertex coloring.

3.2.1 Max-IS Algorithm

The algorithm we present, solves the OCCP problem, which is a more general problem
and can be used to solve the sum coloring problem by letting the color costs be 1,2,...,n.

A mezimum independent set partitioning (Max-ISP) is a partitioning of the vertices
into a sequence of independent sets such that each independent set is a maximum inde-
pendent set in the remainder of the graph. That is, if we call the ith independent set in the
sequence b;, then b; is a maximum independent set of vertices of G[V —{bUb,U.. ., b;-1 }].
A mazimal independent set partitioning is defined similarly, where each independent set
is a maximal independent set in the remainder of the graph. The partitioning of vertices
that the algorithm finds is a maximum independent set partitioning (Max-ISP), and we
call the algorithm Maz-IS. We will show that it is enough to find a Max-ISP for G and
assign color ¢; to the vertices of the class b;.

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 29

The algorithm works recursively on the pr-tree T of G. It starts from the root of T,
and goes down the tree. The general step of the algorithm has the following input and
output:

Input: A node v of T, and T'(v), the subtree rooted at v.
Output: A Max-ISP of Gr(,)-

The base case of the algorithm is when v is a leaf, and the Max-ISP of a leaf is the leaf
itself. Now we define the rules of the algorithm when v is an internal node or the root.
Assume that the number of children of v is m (m > 2). Call its children w;, w,, ... wy,.
We have three cases for the type of the node v:

e v is a union node:

Therefore the subgraph Gr(.) is disconnected. Find the Max-ISP of each of the
subgraphs G7(w,), GT(wn)s - - - » GT(wm) recursively. Call the j’th independent set of
the Max-ISP of Gr(u;), bij, and let s; denote the number of independent sets in
GT(w)- Then the j'th independent set of the Max-ISP of G7(,), denoted by b;, will
be U, bi;. Note that b;; will be empty, if § > s;. So by this definition, the number
of maximum independent sets found for Gr(y), is equal to maz{si}1<i<m.

e v is a join node:

Thus Gry) is the join of the subgraphs Gr(u,)s GT(u)s - - - » GT(wm)- Again, find the
Max-ISP of each of these subgraphs recursively. As before, call the j'th indepen-
dent set of the Max-ISP of Gr(u,), b, and let s; denote the number of indepen-
dent sets in G(,,). The total number of independent sets over all the subgraphs
GT(w1) OT(un)s - - - » GT(wm), Will be 32, s; = S. Sort all of these independent sets
by their increasing size and return the sorted list.

e v is an add tail node:

In this case, v has two children, w, and w,, one corresponds to a graph consisting of
two non-adjacent vertices a and d, and the other one corresponds to a Py-reducible
graph. Let’s assume, without loss of generality, that G(.,) is the one having a and
d, and let the vertices of Gr(.,) that are connected to a and d, be b and c respec-
tively. Find the Max-ISP of Gry.,) recursively. Since b and c are each adjacent to
all other vertices of Gr(u,), €ach of them is itself a maximum independent set in
this partitioning, and of course has size one. So we can reorder (to be proven later)
the sequence of Max-ISP of Gr(u,) such that these two independent sets are at the

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 30

end of this sequence. In other words, we can change these two independent sets
with the last two in the sequence of Max-ISP, and it will be a Max-ISP as well.

Now, to find a Max-ISP for Gr(,), we continue in the following two cases:

— If the number of independent sets of G(w,) is greater than two, then add a
and d to the first independent set class and return.

— If the number of independent sets of Gr(u.,) is equal to two, then add a to the
set containing vertex ¢, and add d to the set containing vertex b, and return.

After finding the Max-ISP for the graph G, the algorithm assigns color ¢;, which has
the least cost value, to the first independent set in the sequence, ¢; to the second one,
and so on. We claim that this coloring is an optimum vertex coloring of G with cost
values ¢;,¢2,...,Cn.

3.2.2 Correctness of the Max-IS algorithm

In this section we prove the correctness of the algorithm. To do so, we first prove some
lemmas, which are used in the main theorem of this subsection. The second one proves
the correctness of the main part of the algorithm, which is finding a Max-ISP for G.

Lemma 3.10 Let G be an arbitrary graph. Then:

e If G is disconnected, then its chromatic number is equal to the mazimum of the
chromatic numbers of its components.

o If G is the join of some smaller subgraphs, then its chromatic number is equal to
the sum of the chromatic numbers of those subgraphs.

Proof: The first part is trivial. If G is the join of some subgraphs, say G,,Ga, ..., Gk,
then no two vertices from two distinct G;’s can have the same color in any proper coloring
of G. Therefore the class of colors used in each subgraph G; is different than the colors
used for any other G; (i # 7). Thus we need at least .5, x(G:) colors for a proper
coloring of G. e

Lemma 3.11 If G is a Py-reducible graph and T is the corresponding pr-tree, then the
algorithm finds a Maz-ISP for G.

Proof: We prove this lemma by induction on the size of G. The base case is when
|G| = 1, and clearly the algorithm works correctly. Now suppose that the algorithm finds

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 31

a Max-ISP for all Ps-reducible graphs of size smaller than n, and let |G| = n. Consider
node r, the root of tree T', and its children w,,w,,...,w,. We have three cases for the
type of r:

e r is a union node:

So G is the union of the subgraphs Gr(w,), GT(ws); - - -y GT(wm)- The algorithm finds
a Max-ISP for each of these subgraphs recursively, which is correct by the induc-
tion hypothesis, because all of them have smaller size than |G|. Recall from the
algorithm that the j'th independent set of graph Gr(,,) is called b;;. Because G is
disconnected, any maximum independent set of G restricted to a component of it
induces a maximum independent set. Thus |JZ, b;; is a maximum independent set
of G. In general, UZ, b;; is a maximum independent set of G — {b;,b2,...,b;-1}
and hence the algorithm finds a Max-ISP for G in this case.

e r is a join node: So G is the join of the subgraphs Gr(uw,), GT(ws)s- -+ s GT(wm)-
Again, by the induction hypothesis the algorithm finds a Max-ISP for each of
these subgraphs recursively. Since G is the join of Gr(w,), GT(uz)s - - - s GT(wm)> 30Y
independent set, and in particular any maximum independent set of G, will be
contained completely in one of these subgraphs. Therefore, each independent set
in any Max-ISP of G is a maximum independent set in the remainder of one of its
components. Thus, each b;; will be an independent set in a Max-ISP of G. So it’s

enough to sort all of them by their size and the resulting sequence is a Max-ISP
for G.

e r is an add tail node: Recall the part of the Max-IS algorithm where the internal
node is an add tail node. So r has two children, w; and w,, where Gz(.,) is just two
non-adjacent vertices. By the induction hypothesis, the algorithm finds a Max-ISP
for G1(uy)- Since b and c are adjacent to all other vertices in Gr(uy), €ach of them
will be 2 maximum independent set in the Max-ISP of Gr(u,).

If there is any vertex other than b and ¢ in G7(u,), then we can put the independent
sets of b and c at the end of the Max-ISP of G7(u,). Also, a and d are not adjacent
to any vertex, other than b and ¢. Thus the maximum independent set of G will
contain the maximum independent set of Gr(y,), Which is neither {b} nor {c}, union
{a,d}.

If there is no vertex, other than b and ¢ in Gr(u,), then the maximum independent
sets of G are just {a,c} and {b,d}. So in both cases, the algorithm finds a Max-ISP
for G.

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 32

Therefore, in all of these three cases for the type of root of T, the Max-IS algorithm
finds a Max-ISP for G. [|

Lemma 3.12 Let G be a P,-reducible graph. Then the number of independent sets found
by the Maz-IS algorithm for G, is equal to x(G).

Proof: We prove it by induction on the size of graph. The base case, where |G| =1
is trivial. Now suppose that the statement is valid for all graphs of size smaller than n,
and let |G| = n. Let T be the pr-tree of graph G, and consider type of the node r, the
root of T

e r is a union node: So G is disconnected. Call its components G, Ga,...,Gn.
Since the size of each G; is smaller than n, we can apply the induction hypothesis
to it. So the algorithm partitions each G; into x(G;) independent sets. As we
mentioned in part one of the algorithm, in this case the number of independent
sets found for G, is equal to the maximum of number of independent sets of its
components. Therefore the number of cells in the partition of G is the maximum
of the chromatic numbers of its components. By lemma 3.10, this is equal to the
chromatic number of G.

e r is a join node: So G is the join of some smaller subgraphs, say G,Ga,...,Gn.
The size of each G; is smaller than n, and again we can apply the induction hypoth-
esis to them. Therefore the algorithm partitions each G; into x(G;) independent
sets. According to part two of the algorithm, the number of cells in the partition
of G is the sum of the number of independent sets of all of these subgraphs, which
is equal to I, x(G:). By lemma 3.10, this number is equal to x(G).

e r is an add tail node: Let w, and w; be the two children of r, where Gr(.,) is
the two non-adjacent vertices a and d. We have |Gr(.,)| = n — 2, and so we can
use the induction hypothesis. Therefore the number of maximum independent sets
of GT(,Q), found by the Max-IS algorithm, is equal to X(GT(wz))- Also GT(.,,,) isa
subgraph of G and therefore x(G) 2 x(Gr(w,))- The Max-IS algorithm partitions
G into the same number of independent sets as it does for Gr(u,). Therefore, G
is partitioned into x(GT(w,)) independent sets, which is certainly not more than

x(G).

Now we are ready to prove the main theorem of this section.

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 33

Theorem 3.13 If b, b,,...,b; is a Maz-ISP for a Py-reducible graph G of size n, and
c1 < ¢ <...< c, are the given color cost values, then assigning the color with cost c; to
the vertices of class b;, gives an optimum vertezx coloring for G.

Proof: We prove this by induction on n. The base case, where |G| = 1, is trivial. Now
suppose that the theorem is correct for all graphs of size smaller than n. Let P be an
optimum vertex coloring of G, and let py, pa,. .., p1 be the sequence of independent sets
of P. From the observations at the end of section 1.3, this is a maximal independent set
partitioning. Consider the pr-tree T of graph G. Let r be the root of T', which has m
children w,, w,, ..., w,. We have three cases for the type of r:

e r is a union node: In this case, G is disconnected and is the union of the sub-
graphs G1(w,); GT(us)s - - -» GT(wm)- L€t p;; be the subset of the independent set p;,
restricted to the subgraph Gr(u;)- So pi1, pi2, - - ., Pit; are independent sets of Gr(w;),
where ¢; is the number of them. In any optimum vertex coloring, the vertices of p;,
and therefore the vertices of p;;, all have color c;. Since the size of each Gr(y,) is
smaller than n, we can use the induction hypothesis for it. The algorithm finds a
Max-ISP for Gr(u;), which is bii, bz, . . ., by, , and assigns color ¢; to the vertices of
the class b;;. By lemma 3.12, we have s; = X(G7(w;)) < ti. Now using the induction
hypothesis, this is an optimum vertex sum coloring, for the subgraph Gr(,,). So
for the subgraph Gr(.,) we have:

& ts
3 el <Y eilpiil-
Jj=1 =1
But we know that:
m m
bj=Ub; and p;=Jmi;-
i=1 i=1

Thus we have:

k k m k m
Yocibi=Y cllJbil =Y ¢ Y Ibisl =

i=1 i=1 i=1 Jj=1 i=1
k m m 5 m &
YD eilbisl =320 esilbisl D03 eilpisl =
j=1i=1 i=1 j=1 i=l =1
I m i m { m {
YD cilpil =D X Ipiil = 2ot U piil = 2o cimse
j=1i=1)=l =1 =1 i=1 =1

Therefore the cost of the coloring of the Max-IS algorithm is not more than any
optimum vertex coloring.

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 34

® r isa join node: So G is the join of the subgraphs Gr(w,)» GT(wy)s - - - » GT(wm)- Each
p; must be contained completely in one of these subgraphs. Let’s call the subse-
quence of py, py, . . ., pr that are subsets of Gr(u;) , Pit, Pizs - =+ s Pit;- S0 Piry Pizy -+, Pi;
is a Max-ISP of Gr(u;). Also call the subsequence of ¢;,cz,...,c, that is used by
the coloring P for the vertices of Gr(u;), Ci1, €2, . - -, Cit;- Note that p;; (for all ¢, 5) is
equal to p, for some 1 < z </, and ¢;; is equal to ¢;. In the Max-IS algorithm, first
we find the Max-ISP of each Gr(.), which is b;1, b, ...,b;,;. Now we use the in-
duction hypothesis for each Gr(u;): |GT(w;)| < n and the sequence of by, bia, . . . , by,
gives a Max-ISP for G7(u;). Also, s; < t; by lemma 3.12. Thus assigning color ¢;

to the vertices of b;;, is an optimum vertex coloring and therefore its cost is not
more than the cost of the coloring P, which is:

t

X Ciipij-

=1
This assignment of colors to the sets b;; gives a coloring for G, whose cost is not
more than the cost of the optimum vertex coloring P. But we have to prove that
if we sort all b;;’s by their size and assign color ¢; to the i’th set, it gives a coloring
which is not worse than this one. Actually, this is not difficult to show. We prove
by contradiction. Assume that for some i, j and some ¢, ', we have:

bi;] > [bj| and ezl > |ewrsol.

It can be seen easily that if we exchange the color of the vertices of sets b; and
bi+;+, then the resulting coloring is not worse than the former one. Therefore, if we
assign the smaller color to the larger set of b;;’s (in the same way that the Max-IS
algorithm works), it gives a coloring which is not worse than the coloring in which
the vertices of b;; have color ¢;;. This completes the proof of this case.

e r is an add tail node: Let w, be the child of r where Gr(u,) is just two non-
adjacent vertices @ and d, and w; be the other child. In any optimum vertex sum
coloring of G, vertices a and d have at least color ¢;. Thus:

Z(G) 2 (G - {a,d}) +2¢;.

If G = P,, then trivially £(G) = 2¢, + 2¢;, and the coloring that the Max-IS
algorithm finds has the same cost. Otherwise, there is some vertex, other than b
and ¢, in G — {a, d}. By the induction hypothesis, the algorithm finds an optimum

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 35

vertex sum coloring for G — {a, d}, and we know that none of b and ¢ have color
c1, and we assign ¢; to @ and d. Thus the cost of the coloring of G by the Max-IS
algorithm will be:

E(G — {a,d}) + 2c1 < E(G).

Hence the algorithm finds an optimum vertex coloring of G in this case.

3.2.3 Analysis of the Algorithm

In this section, we analyze the time complexity of the algorithm. As we mentioned before,
the pr-tree of a Py-reducible graph can be constructed in linear time. The main phase of
the algorithm is to find a Max-ISP of the given graph. Then it just sorts the color costs,
and assigns them to the independent sets found in the previous phase. Sorting the cost
values, can be done in O(nlogn). So, what lefts is the analysis of the main phase.

Suppose that G(V, E) is a Py-reducible graph, and T is its corresponding pr-tree.
Each of the union, join and add tail operations needs at least two subgraphs to operate
on. In other words, each internal node of T, has at least two children. Also, we know
that the number of leaves of T, is equal to |V|. So the height of T is at most in O(n). It
is easy to see that the number of nodes of T is bounded by 2n — 1.

Consider the node v of tree T, and the step of the algorithm where we want to
find the Max-ISP of Gr(,) using the Max-ISP of its children. We claim that computing
by, bs,..., bk, the Max-ISP of Gr(y), takes O(|Gr(y)|) time, assuming that the Max-ISP
of its children are computed. If v is a leaf then it takes constant time to do so. Assume
that v is an internal node, with children w,, w,,...,wn. Suppose that we have computed
the Max-ISP of them. Recall from the algorithm that b;, bi2, ..., b;,; is the Max-ISP of
the i’th child of ». According to the algorithm:

¢ v is a union node: To compute b;, the j'th independent set of G7(,), we have
to take the union over all b; (1 < i < m), which takes O(|b;{) time. Thus, this
induction step takes 3%, |b;| < O(|Gryy)|) time.

¢ v is a join node: All we have to do is to merge the m pre-sorted lists of Max-ISP
of the children of v. Clearly the time this takes is:

m &

Y Il < g [Gr(wi] = IGr(wl-

i=l j=t

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 36

e v is an add tail node: In this case, it takes constant time to convert the Max-ISP
of the subgraphs induced by children of v to a Max-ISP of Gr(,).

So if v is the root of the subtree, in any of the above three cases, it takes O(|Gr(y)|)
time to compute the Max-ISP of Gr(,), using the Max-ISP of children of v. Since the
maximum height of T is in O(n), each leaf participates in the calculation, at most O(n)
times. We have proved the following theorem:

Theorem 3.14 For a given Py-reducible graph G of size n, the time complezity of the
Maz-IS algorithm is O(n?).

3.3 Vertex sum coloring of chain bipartite and co-
bipartite graphs

As we mentioned before, vertex sum coloring seems to be harder than standard vertex
coloring. The NP-completeness of the vertex sum coloring problem for the class of bi-
partite graphs is proved by Bar-noy et al. [3]. So it’s natural to consider the complexity
of this problem for subclasses of bipartite graphs.

In this section we consider two families of graphs, related to bipartite graphs, and
give polynomial time solutions for finding an optimum vertex coloring for each family.
The first family is the family of chain bipartite graphs. The notion of chain graphs was
introduced by Yannakakis [39, 40]. Then we look at the family of cobipartite graphs and
use the matching technique to find their chromatic sum.

Definition 3.15 A bipartite graph G(X UY, E) is called a chain graph if for every two
vertices z;,z; € X, we have either N(z;) C N(z;) or N(z;) C N(z:).

In other words, there is an ordering of the vertices of X, z4,,%x,...,Zr,, Wwhere n is
the size of X, such that N(zx,) C N(Zs,,,), 1 <i < n. We call this property, the chain
property.

It’s not difficult to see that if we have an ordering of the vertices of part X having
the chain property, we can find an ordering of the vertices of Y with this property, as
well. This shows that the definition of chain bipartite graphs is unambiguous. Now we
describe the algorithm for finding the chromatic sum of a chain bipartite graph.

Let G(X UY, E) be a chain bipartite graph. Without loss of generality, we assume
that the graph is connected. Also, let z,z;,...,2, and y1,¥2,...,¥m (| X| = n and

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 37

|Y| = m) be the orderings of X and Y respectively, having the chain property. By G;;
we mean the induced subgraph of G on vertices {z,,z2,...,2:} U {y1,¥2,..-,¥;}

For a pair (1,j) where G;; has no edges, consider the following vertex sum coloring
of G: Assign color 1 to all of the vertices of G;;. If n — i > m — j then assign color 2 to
Tit1,..., Ty and assign color 3 to yj41,-..,ym. Otherwise, if n — i < m — j then assign
color 3 to zi41,...,%, and assign color 2 to yj+1,..-,Ym- Let S;; be the total sum of
this coloring. We call a pair (¢, j) a proper pair if the set of vertices of G;; is a maximal
independent set of G. Let Spi, be the minimum of S;; for all proper pairs (¢, 7). The
algorithm computes Sp,n and returns the minimum of {Smin,2n; + ny,n- +2n,} as the
chromatic sum of G. The last two values are the total cost of the colorings in which
the vertices of one part all have color 1 and the vertices of the other part all have color
2. We refer to figure 1.1 to see why assigning color 1 to the vertices of one part and
assigning color 2 to the vertices of the other part does not necessarily give an optimum
vertex coloring of a chain bipartite graph.

Theorem 3.18 The chromatic sum of G is equal to the minimum of {Smin, 2nz+ny, n=+
2n,}.

Proof: Let C be an optimum vertex coloring of G. We denote the color of vertex v by
c(v). If no vertex in X has color 1, then all of the vertices in Y must have color 1 and
so all the vertices in X must have color 2. Thus the total cost of C' will be 2n; + n,,.
Similarly if no vertex in Y has color 1, then all of the vertices in X must have color 1,
and all the vertices in Y must have color 2, and the total cost of C will be n; + 2n,.

Now assume that there is at least one vertex in X and at least one vertex in Y such
that both of them have color 1. Let i be the largest number such that ¢(z;) = 1, and let
J be the largest number such that ¢(y;) = 1. Since ¢(z;) = 1 no vertex in N(z;) can have
color 1. Also, we know that C is an optimum vertex coloring, and N(zx) C N(z;), for
k < i. Therefore, all the vertices z,, 3, ..., ;-1 must have color 1, too. Similarly all the
vertices y1,Y2, .. ., Y;j-1 must have color 1. Thus the vertex set of G;; is an independent
set.

It follows from the definition of ¢ and j that the color of the vertices zi41,...,Zn,
and y;41,...,Yn, must be greater than 1. So each of them must be connected to a vertex
having color 1, otherwise we could simply change its color to 1, which reduces the total
sum of colors. In particular, z;4; is connected to y, for some a < j, and y;4, is connected
to z, for some b < i. Because of the chain property it follows that z; is connected to
all of the vertices y;41,...,Yn,, and y; is connected to all of the vertices z41,...,2n,,

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 38

and the subgraph G — G;; is a complete bipartite subgraph. Therefore G;; is a maximal
graph such that its vertex set is an independent set. Thus (1,) is a proper pair.

Note that if kK > 7 and [> j, then no two vertices z; and y;, can have the same
color. Now it's clear that the vertices of the larger of the two sets {z41,...,2,,} and
{Yi+1s---Yn,} must be colored with color 2, and the vertices of the smaller one with
color 3. This kind of coloring is the same as the one we use in the algorithm when we
select a proper pair. Therefore by considering all proper pairs, we will eventually consider
the proper pair (7,) and compute the cost of coloring C, which is equal to the chromatic
sum of G.

]

To find a proper pair (z,{) for a fixed ¢, first we find the largest number j such that
r;y; € E. If such a number does not exists then it’s clear that there is no proper pair
having 1 as the first element.

We now show that (i, j) is a proper pair and that it is the only proper pair having i as
the first element. This follows from the fact that, if z,yy € E,1 <a<iand 1 < b < j,
then because of the chain property, z;ys € E. Since b < j, this implies that z;y; € E,
which is a contradiction.

Therefore, to find a proper pair with (3, j) for a fixed ¢, it takes at most O(deg(z;))
time !. So overall, the time complexity of finding all proper pairs is O(|E|). We have
proved the following theorem:

Theorem 3.17 We can find the chromatic sum of chain bipartite graphs in O(|E|).

Another family of graphs for which the chromatic sum (and also an optimum vertex
coloring) can be computed efficiently is the class of cobipartite graphs. A graph G is
cobipartite if it is isomorphic to the complement of a bipartite graph, i.e its vertex set
can be partitioned into two disjoint sets, each inducing a complete subgraph. We explain
how to derive the chromatic sum of such a graph using bipartite matching.

Assume that we are given a cobipartite graph G(A U B, E) where the subgraphs
induced on A and B, denoted by G4 and Gp respectively, are both complete. It follows
that the number of vertices of each color class in any optimum vertex coloring of G is at
most two. Otherwise, there are at least two vertices of the same color in part A or B,
which is a contradiction.

So we have some color classes of size one, and some color classes of size two such that
each of them has one vertex z in A and one vertex y in B, such that zy & E. It is clear

!Depending on how the graph is given, we may be able to find the pair (i, j) in constant time, but
the total time of reading the graph from input is at least O(|E|)

CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 39

that to get a minimum total sum, we must have as many classes of size two as possible
and assign the smallest colors to them.

Let G’(AUB, E') be the complementof G. So G’ is bipartite. Let M = {v u,,vouy,...,
vkui } be a maximum matching in G', where [M| = k. It is trivial that wv; € E,1 <i <k,
and there are at most k such pairs in E. Therefore to obtain an optimum vertex coloring
of G, we assign color ¢ to vertices u; and v;, 1 <1 < k, and color arbitrarily each of the
remaining vertices with one of the colors k+1,k+2,...,|V| —2k. Computing the max-
imum bipartite matching can be done in O(|E{|V|*®) as follows from Even and Tarjan
[12]. We summarize the above arguments in the following theorem:

Theorem 3.18 The vertez sum coloring problem can be solved on cobipartite graphs in
O(|E||V|%®) time.

Note that Jansen [22] independently has proved this theorem using the same tech-
nique.

Chapter 4

Edge sum coloring

It is quite natural to try to extend the notion of vertex sum coloring to other kinds of
graph coloring, such as edge coloring. The edge sum coloring problem on graphs asks to
find a proper edge coloring, such that if E; is the class of edges having color i, then the
total sum 35, i| E;| is minimized. We call such a coloring, an optimum edge coloring,
and call the sum of colors the edge chromatic sum.

As we mentioned in section 1.4, this problem was first introduced in {17} and [2] as
the vertex sum coloring of the line graph of a given graph. We know from theorem 1.8
that A < §'(G) £ A + 1, and that the edge sum coloring is NP-hard for multigraphs.
These are almost the only known results for edge sum coloring.

In this chapter, we give some more results on this problem. In the first section, we
prove that finding the edge chromatic sum and also finding the edge strength of a simple
graph are both NP-complete. In fact we prove that these problems are NP-complete even
for the class of 3-regular graphs. In the second section we present a polynomial time
algorithm, which uses weighted matching in bipartite graphs, to find the edge chromatic
sum of trees. The algorithm can easily be modified to find an optimum edge coloring, as
well. This algorithm can also be used for the case that the tree is a weighted tree, i.c a
value is given for each edge of the tree, as the weight of that edge. Finally, in the third
section we show how to use Eztended Monadic Second Order Logic to find a linear time
algorithm for finding the edge chromatic sum of partial k-trees with bounded degree, for
fixed k.

40

CHAPTER 4. EDGE SUM COLORING 41

4.1 Complexity of the edge chromatic sum and the
edge strength problems

In sections 2.1 and 2.3 we saw that the vertex strength problem and the chromatic sum
problem for split graphs are NP-complete.

In [2] Bar-noy et al. prove that the edge sum coloring problem is NP-complete for
general multigraphs, but the complexity of this problem was left open for simple graphs.
In this section, we prove that the edge sum coloring problem is NP-complete for simple
graphs. In particular, we show that finding the edge chromatic sum and finding the edge
strength of a cubic graph are both NP-complete. A cubic graph is a graph whose vertices
all have degree three. We use the reduction from the chromatic index problem restricted
to cubic graphs:

Instance: A cubic graph G.
Question: Is x'(G) = 3?

Holyer [18] proves that this problem is NP-complete. By Vizing’s theorem we know
that A € x'(G) £ A + 1. So any cubic graph is 4-edge colorable. Also, by theorem 1.8
A < ¢'(G) £ A+1. So the edge strength of a cubic graph is also either 3 or 4. We prove
that deciding whether s'(G) = 3 for a cubic graph is NP-complete. First we show that
finding the edge chromatic sum of a cubic graph is NP-complete:

Instance: A cubic graph G of size n.
Question: Is £¥'(G) = In?

Note that since the degree of each vertex of a cubic graph is three, in any edge coloring
of G the total sum of the colors of the edges of a vertex is at least 1 + 2 + 3. Therefore,
2'(G) 2 3n.

Theorem 4.1 The edge chromatic sum problem is NP-complete for cubic graphs.

Proof: First of all, it is trivial that this problem belongs to NP, since we can easily
verify whether a given edge coloring is a proper one or not, and if its total sum is equal
to 3n or not.

To prove the NP-completeness we use a reduction from the chromatic index problem.
We prove that for the cubic graph G:

£(G) = 3n <= x'(G) =3.

CHAPTER 4. EDGE SUM COLORING 42

First, assume that x’(G) = 3. This means that there exists a 3-edge coloring of G,
called C. Since the degree of each vertex in G is three, all numbers 1, 2,3 must appear
on the edges incident with each vertex. So the total sum of the colors in C is equal to
3n. Therefore £'(G) = 3n.

Now, suppose that £'(G) = 3n. It suffices to prove that any optimum edge coloring
of G is a 3-edge coloring of G. Assume, by way of contradiction, that C is an optimum
edge coloring of G with 4 colors. So there exists at least one vertex such that color 4 is
the color of one of its incident edges. Therefore the total sum of the colors of the edges
incident with that vertex is more than 6. We have the lower bound 6 for the sum of the
colors of the edges of every other vertex. Therefore the total sum of colors of the edges
of the graph will be strictly greater than 3n, which is a contradiction. Therefore, any
optimum edge sum coloring of G is also a 3-edge coloring of G, and so x/(G) =3.

Corollary 4.2 For a cubic graph G we have:
d(G)=3 <= X'(G) =3

Proof: If s'(G) = 3 then trivially ¥'(G) = 3. Now assume that x/(G) = 3. From the
arguments we had in the proof of theorem 4.1 it follows that if s'(G) > 3 then X’(G) > 3n.
Also we know that the sum of any 3-edge coloring of G is 3n. This proves that in this
case §'(G) = 3. [

Since finding the chromatic index is NP-complete for the class of cubic graphs, there-
fore:

Theorem 4.3 Finding the edge strength of cubic graphs is NP-complete.

4.2 Edge sum coloring of trees

In this section, we give a polynomial time algorithm that finds the edge chromatic sum of
trees. This algorithm uses the dynamic programming method. We can find an optimum
edge coloring as well, by storing some extra information in the data tables. Before that,
we give an upper bound for the edge strength of bipartite graphs.

We know the upper bound A+1 for the edge strength from theorem 1.8. We prove, as
a lemma, that for bipartite graphs the value of the edge strength is equal to the maximum
degree of the graph, and will use this fact in our algorithm.

Lemma 4.4 If G is a bipartite graph with mazimum degree A, then s'(G) = A.

CHAPTER 4. EDGE SUM COLORING 43

Proof: Suppose that the lemma is not true, and let G be a minimal counter example,
with respect to the number of edges. That is s'(G) > A + 1. First of all, we claim that
there exists an optimum edge coloring of G, in which there is just one edge with color
s’. To prove this, let uv be an edge with the color s’. Because G is a minimal counter
example, if we remove any edge from G, in particular uv, the resulting graph has edge
strength of at most A. Thus we can consider an optimum edge coloring of G — uv, which
uses A colors, and assign the color s’ to uv.

Now, consider the edge uv, which has color s’. For each of u and v, there is at least
one color that does not appear on its adjacent edges. Let i be the color which does not
appear at u, and j be the color that does not appear at v. We know that : < s’ and
j < &'. Clearly ¢ must appear at v, say on the edge vy, otherwise we can simply change
the color of uv to i, which removes the color s’, and also decrease the sum of colors, both
are contradictions. Similarly j appears at u, say on edge uz.

Let G;; be the subgraph of G, which contains just the edges with color i or j. Consider
the component of G;; which contains the edge uz. Since the degree of each vertex in G;;
is at most two, this component is a path that starts from uz. But this path does not
contain the edge vy. Otherwise, this path together with the edge uv makes an odd cycle
in G, contradicting G being bipartite. Therefore the component of G;; which contains
uz is different from the one that contains vy. Thus we can simply exchange the colors
i and j in the component containing uz, and let the color of uv be j. It can be easily
seen that this exchange does not increase the total sum of colors, and removes the color
s’ which is a contradiction. [

Assume that we are given tree T of size n, with a Breath First Search ordering, rooted
at a vertex with the largest degree. For vertex v of T, we denote the subtree rooted at v
by T,. By lower edges of v, we mean the set of edges that connect v to its children. We
denote the degree of vertex v by deg(v). Define the best set of k for vertez v, to be the
first deg(v) — 1 natural numbers, excluding the number k. Therefore, the best set of k&

for v is:

{2,3,...,deg(v)} k=1
{1,2,...,deg(v) — 1} k > deg(v)
{1,2,...,k—=1,k+1,...,deg(v)} 1<k <deg(v).
H C is an edge coloring of T', the set of colors used for the lower edges of v, is denoted
by L,. The following lemma shows the existence of an optimum edge coloring with a
specific structure for the lower edges of each vertex.

Lemma 4.5 Let v be any vertezx of T, and k € {1,2,...,n}. Suppose that C is an
optimum edge coloring of T', such that the color k appears on the edge joining v to its

CHAPTER 4. EDGE SUM COLORING 44

father. Then there ezists an optimum edge coloring C', in which the colors of the edges
in E(T) — E(T,) are unchanged, and L, is equal to the best set of k for vertez v.

Proof: Assume, by way of contradiction, that there is no such optimum edge coloring.
Consider an optimum edge coloring C”, such that the colors of the edges in T — T, are
the same as in C, and the first ¢ smallest numbers in L,, are the same as in the best
set of k for vertex v, and ¢ is the maximum possible number, between all optimum edge
colorings of T'.

Let j be the first color that is in the best set of k for v, and j & L,. So instead of j,
a number greater than j belongs to L,, call it /. Assume that [is the color of the edge
vu,. Since j & L,, 7 must be the color of one of the lower edges of u;, otherwise we can
simply change the color of vu;, to j and reduce the sum of colors. Therefore 7 € L,,.
Suppose that j is the color of the edge u,u;. If { € L,,, then we can exchange the color
of vu, and u,uy, which doesn’t increase the sum of the colors of T, but we get an edge
coloring in which the number of colors that are in both L, and the best set of k for v is
more than i, which is a contradiction. Therefore [€ L,,.

Using the same argument, there is a chain of edges, starting from vu,, going down in
T, such that the colors of the edges in the chain are j and [, alternatively. This chain
finishes somewhere, because T is finite. The number of edges having color j is not more
than the number of edges having color {, because the chain starts with the edge vu,,
which has color {. Therefore if we exchange the colors j and [in this chain, the total
sum of colors won’t increase. But by this exchange, we get another optimum coloring,
in which the number of common colors between L, and the best set of & for v, is more
than ¢. This contradiction proves that our assumption is wrong. Therefore the coloring
C’ exists. e

Now we explain the algorithm which uses the dynamic programming method. Let
the maximum degree of T be A. We have a n x (A + 1) table, called S, such that:

S[v, j] = The cost of an optimum edge coloring of T, such that j & L,.

For 1 < 7 < A + 1, the initial values of S are filled as:
{ S[z,7]=0 =zisaleaf

S[z,j] = 0o otherwise.

The algorithm computes the values of this table in a bottom-up way, from the leaves
of the tree up to the root. It computes the value S[v, j] for each internal node v, after it
has computed the values for the children of v.

CHAPTER 4. EDGE SUM COLORING 45

From the definition of best set, it follows that for all values of m > deg(v), the best
sets of m for vertex v, are all equal. So, when we have computed S[v, deg(v)], we can set
the values of S[v, m] to S[v, deg(v)], for m > deg(v).

Suppose that u;,us,...,u are the children of internal node v. Assume that Sfu;, j]
is computed, for 1l <i<kand 1 <j < A+1, and we want to compute the value of
S[v,m] (1 £ m < A+1), the cost of an optimum edge coloring for T, such that m & L,.

Construct the complete weighted bipartite graph G, = (AU B, E’), as follows:

A = {ay,az,...,a;} and B = {b;|7 € the best set of m for v}
w(a:b;) = S[ui,J] +J

By w(a;b;) we mean the weight of the edge a;b;. Now find a min-weighted maximum
matching in G,, and call it M. This matching covers all the vertices of A. We assign the
colors of the lower edges of v, according to the following rule:
The color of vu; is c;, if the edge a;b., is in M.
It's trivial that by this assignment the value of S[v,m] is equal to the sum of the
weights of M, which is:
Y wle)= Y Suicl+a.
eEM aibe,EM
Knowing how to compute the value of S{v, m], from the computed values of children
of v, the algorithm starts from the leaves of T, and fills in the table, from bottom to up,
until it computes the value of S[r, A + 1], where r is the root of T. This is equal to the
chromatic sum of T'.

Theorem 4.6 The above algorithm computes the chromatic sum of T.

Proof: The correctness of the algorithm follows easily from the following lemma:

Lemma 4.7 If the values of S[u;,j] are computed for 1 < i< kandl < j<A+1,
then the above algorithm computes the value S[v,m] correctly.

Proof: Suppose that we want to compute the sum of an optimum edge coloring of
T, in which m ¢ L, for the internal node v. By lemma 4.5 there exists such an optimum
edge coloring in which L, is equal to the best set of m for v. Therefore, to find such an
optimum edge coloring and its cost, we have to find a proper permutation of the values
of the best set of m for v, and assign the i’th element of it as the color of the i’th lower
edge of v.

CHAPTER 4. EDGE SUM COLORING 46

Since we are looking for the cost of an optimum edge coloring, if the color of the edge
vu; is ¢;, then the sum of the colors of the edges in T;, is S[u;, ¢;]. So all we have to do,
is to find the values ¢;, for 1 < i < k, such that:

¢; € the best set of m for v
c;#c; fori#)
¥, S[ui, ;] + ©%, ¢ is minimized.

Consider the bipartite graph G, = (AU B, E') and the min-weighted maximum matching
of it, M. According to the rule of the algorithm, we select the optimum edge coloring of
T,,, with the condition that | € L,,, and assign the color { to the edge vu;. Since M is a
matching, color ! is different from the color of any other lower edge of v. Thus, this is a
proper coloring.

We set S[v, m] to the total sum of this coloring which is:

z: w(e) = Z Slui,] + ;.
ecEM aibe, EM

Since M is a min-weighted matching, the above sum is minimized. Equivalently, the
cost we find is the cost of an optimum edge coloring of T,, given that m & L,. This
proves that we compute S[v, m] correctly.

a

By the previous lemma the algorithm computes the value S[r, A + 1], where r is the
root of T, correctly. Since T is bipartite, by lemma 4.4 it needs A colors for an optimum
edge coloring of it. So the value of S[r, A + 1} is equal to the edge chromatic sum of T.

L

To find an optimum edge coloring for T, we only need to keep track of the colors of
the lower edges of each vertex v, when we compute S[v,m]. This can be easily done by
storing this extra information for each entry of the table S.

The most time consuming step of the algorithm is to find the min-weighted matching.
If the vertex v has k children, then the size of the bipartite graph G,, is of O(k). Note
that we don’t make G, for the values of m where m > deg(v). The fastest min-weighted
maximum matching algorithm works in time O(|E||V|log|V|) and is due to Galil et al.
[14]. Using this algorithm, for each vertex v, and each value m < deg(v), we spend
O(deg(v)® log deg(v)) time. Thus the total amount of time for computing the entries of
the row v of the table S is O(deg(v)* log deg(v)). Summing up these values for all v, we
have the bound O(n*logn) for the time complexity of this algorithm. Therefore, we can
say:

CHAPTER 4. EDGE SUM COLORING 47

Theorem 4.8 We can find an optimum edge sum coloring of a tree, and therefore ils
edge chromatic sum in time O(n*logn).

Weighted Trees: The above algorithm can also be used for finding an optimum
edge coloring of weighted trees. By a weighted tree, we mean a tree T, with a weight
w(e) for each edge e of T. The cost of an edge coloring f : E — N is defined as:

> w(e)f(e)

171
and the goal is to minimize the above sum. We use the same algorithm as for the regular
trees. We have the table S, whose S[v,i] entry gives the cost of the optimum edge
coloring for the subtree T,, with the extra condition that i ¢ L,. To compute the value
of S[v,i], we construct the bipartite graph G,(A U B, E') in the same way, but the the
value of the weights of its edges are a bit different. If the color of the edge vu; is j, then
its contribution to the total sum is j x w(vy;), rather than just j. Therefore, the weight
of the edge a;b; in G, is:

Slui, 7] + J x w(vy;).

Now we follow the same steps. It’s not difficult to see that the value of S[root, A + 1]
is the cost of an optimum edge coloring of T'.

4.3 Edge sum coloring of partial k-trees with bounded
degree

In a long series of papers, Robertson and Seymour showed many deep results on graph
minors. There, they introduced the notion of the tree-width and path-width of a graph
[32, 33]. This area has been studied extensively by many others. Bodlaender [5, 6] has
good surveys on this topic.

We saw in section 1.4 that the vertex sum coloring problem is polynomially solvable
for graphs with bounded tree-width, i.e partial k-trees for fixed k. In this section we
show how to use Monadic Second Order Logic to solve the edge sum coloring problem for
partial k-trees with bounded degree.

Monadic second order logic (MS) is a powerful language which contains, like first order
logic, propositional logic operators (A, V, -, =5, and <), individual variables (which
are denoted by small letters z,y,z,...), existential (3) and universal (V) quantifiers,
and predicates. Moreover, it contains set variables X, Y, Z,..., and the membership (€)
symbol. It allows existential and universal quantifiers over set variables.

CHAPTER 4. EDGE SUM COLORING 48

We can use this language to define problems on finite graphs. Then, solving a problem
for a given instance is equivalent to deciding whether the formula expressing the problem
in MS, is satisfiable or not. For example, the property that a subgraph of a graph G,
induced by set Z, is connected, can be stated as:

partition(U,V,Z) = (Z=UUV)AUNV=0)AU#Z)A(V #2)
adjacent(U,V) = 3udv(v € V Au € U A adj(u,v))
connected(Z) = VUVV partition(U,V, Z) = adjacent(U, V)

where adj is the adjacency relation of the vertices of the graph. Although we don’t have
the equality operator in the definition of MS, we used it freely, since it can be written as

(Z=Y)=Vr{reZ <>z EY).

We say a graphic problem has the MS property if it can be formulated in the MS
formulation. Courcelle [9, 10] introduced the use of MS to solve problems restricted to
partial k-trees. He proved that any problem that can be formulated by a MS formula
has a linear time algorithm, when restricted to graphs with bounded tree-width and if a
tree decomposition of the graph is given.

Later, Arnborg et al. [1] extended the definition of MS, to Eztended Monadic Second
Order Logic (EMS). An EMS formula, is a MS formula that also contains some evaluation
expressions that contain cardinality of set variables, weight of elements of graphs (e.g
weights of edges), arithmetic operators (+,—,x), and comparative operators. Using this
extension, we can express, not only the decision problems, but also the optimization
problems for graphs, such as the maximum independent set problem. An EMS property
is called a linear extremum EMS property if the evaluation term is linear in the quantities
of cardinalities of the sets. For a detailed definition of MS and EMS properties we refer
to [1]. They showed how to transform a problem on partial k-trees having a MS or EMS
property to a problem on binary trees. Since we can make the tree decomposition of a
partial k-tree in linear time, we can decide MS or EMS properties on such graphs if we
can decide MS properties on labeled binary trees.

Theorem 4.9 [1] For the classes of graphs with bounded tree-width all problems having
the MS property or the linear extremum EMS property can be decided in linear time, if
the graph is given together with a tree decomposition of it.

For example, we know that 3-color problem, which asks whether a given graph G is
3-colorable or not, is NP-complete. This problem can be formulated in MS as follows:

CHAPTER 4. EDGE SUM COLORING 49

3XCVIY¥CVIZev:(XnY=0AXnZ=0QA(YNZ=0)A
YVweV(veXVveYVveZ)AVweVVueV :iuvekE
= ((veXAueX)A-(veYAueY)A-(veEZAue2Z))

So the chromatic number problem which is NP-complete in general, is solvable in linear
time for partial k-trees, for any fixed k.

To prove that the edge sum coloring problem is solvable in linear time for any partial
k-tree with bounded degree and any fixed k it suffices to give a linear extremum EMS
formula expressing this problem. The property that graph G can be edge colored with ¢
colors, can be expressed as:

Edgecoloring(G,c) =3E, CE3IE, CE ... 3E.CE:
(E\NE,=0)A...AE\NE,=0)A...A(E..x NE. =0)A
Ve(ee E<=>ec EVee E3V...Ve€ E)A
(e1 € Ey A ey € Ey => —adj(e1,e2)) A...N(ey € E. A ez € E, => -adj(ey, €;))

By theorem 1.8 we know that if the maximum degree of a graph is A then the number
of colors used in an optimum edge sum coloring of the graph is at most A + 1. So if the
degrees of the vertices of a class of graphs is bounded by some constant C, then any of
the graphs in that class use at most Ca + 1 colors in any optimum edge sum coloring of
it. Therefore, we can state the edge sum coloring problem for the class of graphs with
maximum degree bounded by C, as finding the minimum of the following evaluation
term under the constrain Edgecoloring(G,Ca + 1):

CA+1

Y lE]

=1

By theorem 4.9, the edge sum coloring problem for the class of graphs with maximum
degree bounded by C, is directly solvable in linear time for partial k-trees from the above
minimization problem.

Chapter 5

Concluding remarks

5.1 Conclusion

In this thesis we studied the sum coloring problem. We proved that finding the vertex
strength of a graph with maximum degree 6 is NP-complete. By theorem 1.2 we knew
that the vertex strength of a graph, in particular a tree, might be far from its chromatic
number. Here we showed that for the graphs with small chromatic number (x(G) < 4)
the vertex strength is in O(logn). To show that the sum coloring problem may be
much harder (assuming P # N P) than the standard vertex coloring, we proved the NP-
completeness of it for split graphs. As a consequence this problem is NP-complete for
chordal graphs, whereas the standard coloring problem is in P for perfect graphs and
therefore for chordal graphs.

By adding more restrictions to split graphs, we got the class of k-split graphs. We
showed that although the problem is NP-complete for split graphs, if we bound the
degree of the vertices of one part of a split graph, we have a polynomial time algorithm
for this problem. Also, going further up in the hierarchy diagram of graphs, we gave an
algorithm for this problem for the class of P;-reducible graphs, a superclass of cographs
and a subclass of permutation graphs. Efficient algorithms for cobipartite and chain
bipartite graphs were presented at the end of chapter 3.

For the edge sum coloring problem, we proved the NP-completeness of this problem
for cubic graphs. Also, we provided an algorithm, using the dynamic programming
method and weighted matching in bipartite graphs, to find the edge chromatic sum of
trees. Finally, the existence of a linear time algorithm for this problem for partial k-trees
with bounded degree, for fixed k, was proved using the Monadic Second Order Logic
tool.

50

CHAPTER 5. CONCLUDING REMARKS 51

5.2 Open problems

One of the most interesting open questions in the area of chromatic sum is conjecture
1.6 presented by Hajiabolhassan et al. [17] which states that the strength of a graph
is at most [-’*ﬁgﬂ] We believe that this conjecture is true for bipartite graphs. In
that case we would have the tight upper bound 1 + [£] for the strength of bipartite
graphs, and interestingly, trees capture this upper bound. If in fact the conjecture is
true for bipartite graphs it would be interesting to see if the proof could be generalized
to k-colorable graphs, for k£ > 3.

In the proof of the NP-completeness of the vertex strength problem, we think that
the bound of 6 for the maximum degree of the graph can be improved to 4. In other
words, we expect that the vertex strength problem is NP-complete for the graphs with
A = 4. Also, we don’t know the complexity of deciding if the strength of a given graph
is 2 or not. Since x(G) < s(G) we have to consider only bipartite graphs. So for a given
bipartite graph G, can we check in polynomial time if $(G) = 2? It doesn’t seem to be
solvable in polynomial time since the sum coloring problem is NP-complete for bipartite
graphs.

In section 2.2 we proved that for graphs with x(G) < 4, s(G) € O(logn). Although
we couldn’t generalize the method we used in section 2.2 to give logarithmic bounds for
the vertex strength of graphs with bounded higher chromatic number, we expect that
the same logarithmic bound holds for such graphs.

It is interesting to consider the time complexity of the sum coloring problem for other
classes of graphs. Since the OCCP problem is NP-complete for permutation graphs [22],
it doesn’t seem to be hard to prove the NP-completeness of the sum coloring problem
for permutation graphs. If this is the case, then some other interesting questions come
to mind, such as: what is the time complexity of this problem restricted to the class
of graphs that are both interval and cointerval? It is known that these graphs are the
intersection of permutation and split graphs.

In appendix A we extend the notion of sum coloring to list sum coloring and give an
algorithm to solve this problem for graphs with bounded tree-width. We give a direct
application of this problem, so it might be interesting to study this problem on other
restricted families of graphs.

We believe that there are classes of graphs for which the edge sum coloring problem
is harder than vertex sum coloring. We tried to extend the results of sections 4.2 and 4.3
to graphs with bounded tree-width, using the dynamic programming method based on
the tree decomposition of the graph. This method fails at a stage which needs to solve

CHAPTER 5. CONCLUDING REMARKS 52

a 3-dimensional matching. It might be the case that this problem is NP-complete for
partial k-trees, which would be a really interesting result.

Bibliography

(1) S. ARNBORG AND J. LAGERGREN “Easy problems for tree decomposable graphs”,
J. of Algorithms, 12, 308-340 (1991).

[2] A. BAR-NoY, M. BELLARE, M. M. HALLDORSSON, H. SHACHNAI, T. TAMIR

“On chromatic sums and distributed resource allocation”, Information and comput-
ing, 140, 183-202, (1998).

[3] A. BAR-NoY, G. KORTSARZ “The minimum color sum of bipartite graphs”, In
URL: http://www.eng.tau.ac.il/amotz/publications.html, (1997).

[4] H. BODLAENDER “Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees”, J. of algorithms, 11, 631-643 (1990).

[5) H. BODLAENDER “A tourist guide through tree-width”, Acta cybernetica, 1, 1-23
(1993).

[6] H. BODLAENDER “ Tree-width: Algorithmic techniques and results”, Proceedings
22nd International Symposium on Mathematical Foundations of Computer Science,
MFCS’97, LNCS 1295, 29-36 (1997).

[7) H.L.BODLAENDER “A linear time algorithm for finding tree decompositions of small
tree-width”, STAM J. Comp, 25, 1305-1317, (1996).

[8] D.G. CORNEIL, Y. PERL, AND L.K. STEWART “A linear recognition algorithm
for cographs”, SIAM J. Comyp., Vol. 14 No 4, 926-934 (1985).

[9] B.COURCELLE “The monadic Second order Logic of graphs I: Recognizable sets of
finite graphs”, Information and Computation, 85, 12-75 (1990).

[10] B.COURCELLE “The Monadic Second order Logic of graphs III: Treewidth, forbid-
den minors and complexity issues”, Informatique Theorique 26, 257-286 (1992).

53

BIBLIOGRAPHY 54

[11) P. Erpos, E. KUBIKA, A. SCHWENK “Graphs that require many colors to achieve
their chromatic sum”, Congressus Numerantium, 71, 17-28 (1990).

[12] S. EVEN AND R.E. TARJAN “Network flow and testing graph connectivity” SIAM
J. Comp., 4, 507-518 (1975).

[13] S. FoLDES, P.L. HAMMER “Split graphs”, 8th South-Eastern Conf. on Combina-
torics, Graph Theory and Computing, Congressus Numerantium, 19, 311-315 (1977).

[14] Z. GaLL, S. MicaLl, H. GABOW “An O(EV log V') algorithm for finding a max-
imal weighted matching in general graphs” SIAM J. Comp., 15 1, 120-130, (1986).

[15] M.R. GAREY AND D.S. JOHNSON , “Computers and Intractability”, Freeman, San
Francisco 1979.

[16] M. GRTSCHEL, L. Lovasz, A. SCHRUVER “Polynomial algorithms for perfect
graphs” Topics on perfect graphs North-Holland Math. Stud., 88, 325-356 (1984).

[17] H. HAJIABOLHASSAN, M.L. MEHRABADI, R. TUSSERKANI “Minimal coloring and
strength of graphs™, to appear in Disc. Math.

(18] I. HOLYER “The NP-completeness of edge coloring”, SIAM J. Comp., 10, 718-720
(1981).

[19] B. JaMisoN, S. OLARIU “Ps-reducible graphs - a class of uniquely tree-
representable graphs”, Disc. Math., 51, 35-39 (1984).

[20] B. JAMISON, S. OLARIU “A linear time recognition algorithm for P;-reducible
graphs”, Proc. 9th Conf. on Found. of Software Technol. and Theor. Comp. Sci,
LNCS 405, 1-19 (1989).

[21] K. JANSEN “The optimum cost chromatic partition problem”, Algorithms and com-
plezity, LNCS 1208, 25-36 (1997).

[22] K. JANSEN “Complexity results for the optimum cost chromatic partition problem”,
Preprint.

[23] K. JANSEN “Approximation results for the optimum cost chromatic partition prob-
lem”, Automata, languages and programming, LNCS 1256. 727-737 (1997).

[24] K. JANSEN “Approximation results for the optimum cost chromatic partition prob-
lem”, Preprint.

BIBLIOGRAPHY 55

[25] T.R JENSEN AND B. TOFT “Graph coloring problem”, Wiely-Interscience series
in discrete mathematics and optimization, (1995).

[26] T. JIANG AND D. WEST “Coloring of trees with minimum sum of colors”, J. of
graph theory, to appear.

[27] E. KuBIKA “The chromatic sum of a graph”, Ph.D dissertation, Western Michigan
University, (1989).

[28] K. KuBIkA, G. KUBIKA, AND D. KOUNTANIS “Approximation algorithms for the
chromatic sum”, In Proc. of the First Great Lakes Computer Science Conf., LNCS
507, 15-21, (1989).

[29] E. KuBIKA, A.J. SCHWENK “An introduction to chromatic sums”, Proc. of the
seventeenth Annual ACM Comp. Sci. Conf. ACM press, 39-45, (1989).

[30) L.G. KroON, A. SEN, H. DENG, A. RoY “The optimum cost chromatic partition
problem for trees and interval graphs”, Workshop on graph theoretical concepts in
computer science, LNCS 1197 (1996).

[31] S. NicoLosco, M. SARRAFZADEH, X. SONG “On the sum coloring problem on
interval graphs”, Algorithmica, 23, 109-126 (1999).

[32] N. ROBERTSON AND P.D SEYMOUR “Graph minors, I. Excluding a forest” J. of
combinatorial theory, Series B 35, 39-61 (1983).

[33] N. ROBERTSON AND P.D SEYMOUR “Graph minors, V. Excluding a planar graph”
J. of combinatorial theory, Series B 41, 92-114 (1986).

[34] P.SCHEFFLER “The graphs of tree-width k are exactly partial k-trees”, manuscript
(1986).

[35] A. SEN, H. DENG, AND S. GUHA “On a graph partition problem with an applica-
tion to VLSI layout”, Information Processing Letters, 43, 87-94 (1992).

(36] K.J. SurowIT “Finding a maximum planar subset of nets in a channel”, I[EEE
Trans. on Computer Aided Design, CAD 6, 1, 93-94 (1987).

[37] C. THOMASSEN, P. ErRDOS, Y. ALAvl, P.J. MALDE, A.J. SCHWENK “Tight
bounds on the chromatic sum of a connected graph”, J. of graph theory, Vol 13, No
3, 353-357 (1989).

BIBLIOGRAPHY 56

[38] D. WeST “Introduction to Graph Theory”, Prentice-Hall Inc. (1996).

[39] M. YANNAKAKIS “Computing the minimum fill-in is NP-complete”, SIAM J. Alg.
Disc. Meth., Vol 2, No. 1, 77-79 (1981).

[40] M. YANNAKAKIS “Node-deletion problems on bipartite graphs”, SIAM J. Comp.,
Vol 10, No. 2, 310-327 (1981).

Appendix A

List sum coloring of partial k-trees

Consider the following scheduling problem: we have n machines, called M;, M;,..., M,,
and some jobs such that each of them needs some process to be done by each of the
machines. We may assume that the process of a job on any machine takes unit time.
There are some constraints for each job, which is given as a conflict graph G of size n, in
which the nodes represent the machines, and two nodes are connected if the job can not
be executed on the corresponding machines simultaneously. Also we have a list for each
machine indicating in which intervals of time we can use that machine for this particular
job. Our goal is to find a schedule for each job in such a way that the sum of the job
completion time is minimized.

It's not difficult to see that the above problem is equivalent to the following variation
of the sum coloring problem, which is called list sum coloring: A graph G with a list of
colors for each vertex v € G is given. We want to find a proper coloring of G such that
the color of each vertex is one of the colors of its list and the total sum of the colors is
minimized. If such a coloring does not exist then the total sum is defined to be infinity.

In the list sum coloring problem we are looking for a list coloring in which the total
sum of the colors is minimized. The list coloring problem is a well known problem in
which we want to find a proper coloring of graph G with a given list of colors for each
vertex, such that the color of each vertex is one of the colors of its list.

We can easily reduce the vertex sum coloring problem to the list sum coloring problem,
by letting each vertex list be {1,2,...,n}. So:

Theorem A.1 If the vertezx sum coloring problem is NP-complete for the class I of
graphs, then the list sum coloring problem is also NP-complete for the class II.

So list sum coloring is NP-complete for bipartite graphs, chordal graphs, and interval
graphs. Also the list coloring problem can be reduced to the list sum coloring problem.

57

APPENDIX A. LIST SUM COLORING OF PARTIAL k-TREES 58

This follows from the fact that if we can find an optimum list sum coloring for graph G
with the total sum less than infinity then there exists a list coloring of G with the given
list of colors. Thus:

Theorem A.2 If the list coloring problem is NP-complete for the class Il of graphs, then
the list sum coloring problem, is also NP-complete for the class Il of graphs.

So the list sum coloring problem is not easier than either the list coloring or the
vertex sum coloring problems. But there are some classes of graphs for which the list
sum coloring problem can be solved efficiently. In this appendix we present an algorithm
to solve this problem for the class of graphs with bounded tree-width, i.e partial k-trees,
in time O(I¥*+'|V|), where ! is the size of the lists of the vertices, and |V| is the number
of vertices.

Recall the definition of a tree decomposition of a graph from section 1.3. A tree
decomposition (X,T) of width k is called smooth if for all i € I, |X;| = k+ 1 and for
all ij € F, |X; N X;| = k. Any tree decomposition of a graph G can be transformed
to a smooth tree decomposition of G with the same width, by applying the following
operations as many times as possible [7]:

(i) If for i3 € F, X; C Xj, then contract the edge ij in T and take as the new node
X; = X;.

(i) f for ij € F, X; € X; and |X;| < k + 1, then choose a vertex v € X; — X; and add
v to Xj.

(iii) If for i7 € F, | X;| = | X;| = k+ 1 and | X; — Xj| > 1, then subdivide the edge 7 in
T, let ¢’ be the new node, choose a vertex v € X; — X; and a vertex w € X; — X;,
and let Xy = X; —vUw.

The contract operation removes two adjacent vertices v and w and replaces them
with one new vertex that is made adjacent to all vertices that were adjacent to v and
w. Bodlaender (7] shows that for a constant k and for the graph G with tree-width at
most k, we can find a tree decomposition of G in linear time. Using the following lemma,
which is proved by him, it can be seen that we can find a smooth tree decomposition of
such a graph in linear time:

Lemma A.3 [7] If (X,T) is a smooth tree decomposition of G(V, E) with tree-width k,
then |I| = V| —k.

APPENDIX A. LIST SUM COLORING OF PARTIAL k-TREES 99

jl j2 jm
Figure A.l: Transforming a smooth tree decomposition to a smooth binary tree decom-

position

We can transform any smooth tree decomposition to a smooth binary tree decompo-
sition with the same width, such that each vertex i has either no child, or two children
71 and ji, where X;, = X, using the following transformation: for the vertex ¢ € I with
m children 7, j2,...,Jm replace the node i with m + 1 copies of it, called zg, ¢3,...,1im,
where i; (1 < £ < m) has two children, the left one is i,_; and the right one is j. [6] (see
figure A.1).

One can easily see that this transformation produces a smooth binary tree decompo-
sition and we can transform any smooth tree decomposition to a smooth binary one in
time linear in the size of the tree.

Let G(V, E) be a graph of size n and tree-width of at most k. We denote the list
assigned to the vertex v by {(v). Suppose that the size of each list is bounded by /. We
assume that a smooth binary tree decomposition of G, called (X,T), is given as well.
For index i € I, let G; be the subgraph whose vertex set is the set of all vertices in a set
X;, with j =1 or j is a descendant of 7 in the rooted tree T'.

We have a |I] x [¥*! table called Opt. Suppose the vertices of X; are v;,, vy, . . ., Vi, , -
The value of Optli, ¢y, ¢3, ..., cks1], where ¢; € (vy;) for 1 < j < k + 1, is the cost of an
optimum list sum coloring of the graph G;, such that the color of vertex v;; is ¢;. The
initial values of the entries of the table are all infinity. The table is filled in a bottom-up
manner, i.e the algorithm starts by computing the values for the leaves of T, and always
computes the value of the table for an internal node when it has computed the values of
its child or its children. In the following lemma, we show how to compute the values of
this table.

Lemma A.4 Let i be a node of the tree T and assume that X; = v;,,v4,..-,05,,,.

APPENDIX A. LiST SUM COLORING OF PARTIAL k-TREES 60

(i) If i is a leaf then:
k41

Opt[iy €1,C2y -0+, ck+l] = Z C;
=1

where c; # ¢y ifvi,v;, €E, 1 <z,y<k+1.

(ii) If i is an internal node with children j, and j2, where X; = X;, and X; = X; U
{v'} — {vi.}, then:

Opt[i; C1,C2y. 1Ck+1] = minc.f{opt[j2,cl, (S 763—1, cv;,cz.*.l s ,Ck+1]+
Optljr,er1,¢2y .+ sG] — Tise ¢i}

where ¢, € [(V'), and if v;,v’ € E then c; # cy.

Proof: The proof is almost straight forward. The only point is the subtraction in case
(ii), which is the sum of the colors of the vertices of X; which are computed in both Xj
and in Xj,, and is redundant. []

The number of entries of the table for each node ¢ € [is at most /*+!, and to compute
the value of each entry we compare at most { values, one for each color of the list of the
vertex v'. Therefore the total number of calculations is in O({*+!|I|). By lemma A.3 we
know that |I| € O(]V|). Therefore the complexity of the algorithm is of O({*+!|V|). Note
that since k is a fixed constant, if the size of each of the lists is bounded, then the time
complexity of the algorithm will be linear. We can conclude from the above arguments
that:

Theorem A.5 The list sum coloring problem is solvable in time O({F+'|V'|) for the class
of graphs with tree-width at most k, where l is the mazimum size of the lists of the vertices.

Since all trees, series-parallel graphs, outerplanar graphs, almost k-trees, and Helin graphs
have bounded tree-width, we can say:

Corollary A.8 We can solve the list sum coloring problem on trees, series-parallel
graphs, outerplanar graphs, almost k-trees and Helin graphs in polynomial time.

