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Abstract 

On Sum Coloring of Grsphs 

Mohammadreza Salavatipour 
Master of Science 

Graduate Department of Computer Science 
University of Toronto 

2000 

The sum coloring problem asks to find a vertex coloring of a given graph G, using natural 

numbers, such that the total sum of the colors of vertices is rninimized amongst al1 proper 

vertex colorings of G. This minimum total sum is the chromatic sum of the graph, C(G), 

and a coloring which achieves this totd s u m  is called an optimum coloring. There are 

some graphs for which the optimum coloring needs more colors thaa indicated by the 

chromatic number. The minimum number of colore needed in any optimum c o l o ~ g  

of a graph ie d e d  the strength of the graph, which we denote by @). nivially 

x(G) 5 s(G). In this thesis we present various results about the sum coloring problem. 

We prove the NP-completeness of hd ing  the vertex strength for graphs with A = 6 and 

dso give some logarithmic upper bounds for the vertex strength of qaphs with s m d  

chromatic number. We also prove that the sum coloring problem is NP-complete for 

split gaphs, Polynomial time algorithms are presented for the sum coloring of k-split 

graphs, PI-nducible graphs, chah bipartite graphs, and cobipartite graphs. 

We can extend the idea of sum coloring to edge eoloring and define the edge chromatic 

sum and the edge strength of a graph similady. We prove that the edge sum coloring 

and the edge strength problems ate both NP-complete for cubic graphs. Also we give a 

polynornial time algorithm to eolve the edge sum colorhg problem on trees, and show 

that using the Monadic Second Order Logic we can aolve this problem on partial k-tr#s 

with bounded degree in linear the.  
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Chapter 1 

Introduction 

1.1 Statement of the problem 

A broad and rich area of graph theory, which has received much attention in the last few 

decades, is graph coloring. As evidence of this attention we mention the book by Jensen 
and Toft [%], in which more than 200 open coloring problems are presented. Generally, 
coloring of a gaph  is an assigoment of natural nurnbers to the elements of a graph, such 

as vertices, such that any two adjacent elements have different colors. Finding a coloring 
for the vertices of a given graph, using the minimum number of colors, is usually referred 

to as vertex coloring, or coloring for short, and this minimum number of colon, denoted 
by x(G), is called the chromatic number of the gaph. There are many other variations 

of graph coloring. We consider the following kind of coloring, which is called the sum 

coloring problem: 

For a given gmph G, Jind a proper vertex coloring of G,  using naturul numbers, 
such that the total sum O$ the colors of vertices is minimized amongst al1 
pmper colorings of G . 

This minimum total sum of colors is cded the chromatic sum of G, and is denoted by 

L(G). We refer to a vertex coloring whose total sum is C(G) as an optimum verte3 
colorîng. 

The notion of a coloring in which we want to minimize the total sum of colors first 

appeared in 1987 h m  two different sources. In thmeticai graph theory, Kubika [27] 
in her PhD thesis introduced the chromatic sum of a graph with the above notation, 
as a -ation of ordinary vertex coloring. The second source of vertex sum coloring 

amse h m  its application in VLSI design. Supowit [36] intmduced the optimum coet 

chmmatic partition (OCCP) probiem, which is very similar to the sum coloring problem. 



Figure 1.1: A coloring of a tree with total sum 12 using 2 colors, and a c010nng with 

total sum 11 using 3 colors 

The OCCP problem asks to h d  a proper coloring of a graph, using a given set of colors 

{cI,c2,. . . ,ck), such that the total sum of colors is minimized. In other words, this is 

the same as the definition of sum colonng with the modification that the set of colors is 

a specific given set, rather than the set of natural numbers. 

It is interesting to note that these two source articles have each motivated bodies 

of research that seem to be unaware of the results arising from the other source. As a 

consequence there has been some duplication of results in the literature. 

Assume that P is an optimum vertex coloring of a graph G with k colors. Let's 

c d  the set of vertices having color i ,  Ci, for 1 5 i < k. Therefore, by definition, 

C(G) = c:=, ilCi1 and it follows immediately that lCil 1 ICi+ll, for 1 5 i < k. Also, it's 
clear that k 2 x(G). One might think that we can obtain an optimum vertex coloring by 

hding  a proper coloring with x(G) colors and then assigning color 1 to the Iargest color 

class, color 2 to the next largest color class, and so on. Bowever, this does not always 

yield an optimum vertex coloring, even for trees. For example any vertex 2-coloring of 

the tree in figure 1.1 gives a total sum of 12 whereas the coloring shown with 3 colors 

gives a total sum of 11. Therefore, it is not necessarily tme that k = x(G). So what 

is the minimum number of colors needed to obtain the chromatic sum of a gaph? This 
is the parameter we c d  the stnngth of Gy and will denote it  by s(G). It is trivial that 

s(G) 2 x w *  
As an interesting result, it hm b e n  proved in [29] that for any fixed k, almost all 

trees have strength at least k. This shows that the strength of a graph can be far fiom 

its chromatic number, and as a consequence, the optimum vertex coloring might be far 
h m  the sum coloring achieved using any vertex x(G)-coloring. 

IR edge coloring problems, we are coloring the edges of a graph, rather than the 

vertices, and h o  edges that share a vertex must have di$erent colors. Simüar to the 
vertex sum doring problern we can d&e the edge mm colo~ng problem, to be an edge 

coloring, using natusal numbers, such that the total s u m  of the colors of the edges of 



Figure 1.2: An example of the over-thecell routing problem 

the graph is minimized. We c d  this minimum total m, the edge chromatic sum, and 
denote it by C'(G). An edge coloring is called an optimum edge coloring, if its total snm 

of colors is C'(G). Similar to the vertex strength, the edge strrngth of a graph is the 
minimum number of colors needed to achieve an optimum edge coloring of the graph, 
and is denoted by st(G). Note that there are some graphs for which the edge strength 
and the chromatic index are not equal, i.e s'(G) > xf(G). See [17] for such an example. 

Edge sum coloring is a more ment notion and, not surprisingly, there are not many 
results about it in the literature. 

1.2 Applications and motivation 

The application mentioned by Nicolosco et d.[31] that motivated their study of the 
surn coloring problern is a problem in VLSI design, known as the over-the-cell routing 
problem. This is exactly the same problem that lead Supowit [36] to the notion of 
the OCCP problem. We are given a set of twetermind nets that should be connected 

electrically. We have a base Line on which the nets lie and some parade1 horizontal tracks 

equally spaced, at distances d = 1,2,3, . . . from the base iine. The connection of two 
net tenninals, whose positions are given, must be composed of two vertical segments and 
one horizontal segment where the horizontal segment must lie on one of the tracks. Note 

that no overlapping nets can be routed through the same track (figure 1.2). The goal is 
to minimize the total length of wires needed to comect these nets. The total length of 
horizontal wires is fixed and is equal to the total sum of distances of two terminals of 

the nets. Therefore we have to minimize the sum of the lengths of the vertical wires. Tt 
is easy to see that this is equivalent to the sum coioring problem restricted to i n t d  

graphs. 

Another application is &en by Kmon et ai. [30]. The OCCP probIem for interval 
graphs is quivalent to the Fixed Interval Scheduîing PmbIem (FISP) with machine 
dependent processing costs. In this schednling problem each job j E J must be executed 
during a given tirne i n t d  (%,fi). W e  aseume that a d u e n t  number of machines 



are available and that each job must be executed by one of the madiines. However, the 
processing costs are machine-dependent. That is, if job j is executed by machine i ,  then 
the associated processing cost is Q. The objective is to h d  a feasible non-preemptive 

schedule for al1 jobs with minimum total processing costs. Other wian t s  of FISP have 

been considered in the literature (see references No 1, 11-14, 22, and 23 of [22]). 
Bar-noy et al. [2] considered the application of the sum coloring problem to the re- 

source allocation problern with constraints imposed by conflicting resource requirements. 
Assume that we have a distributed resource allocation system in which the constraints 

are given as a codict graph G, whose nodes represent processors, and the edges indicate 
cornpetition on resources. Li other words, two nodes are adjacent if the corresponding 
processors can not run their jobs simultaneously. The allocation of the resources must 
sat idy the foliowing conditions: 

O Mutual ezclusion: No two conflicting jobs are executed simultaneously. 

a No infinite wait: The request of any processor is eventuaüy granted. 

The goal is to minimize the average response time. This is equivalent to minimizing the 
sum of the job completion times. Assuming some fixed execution time for jobs, this is 

exactly the sum coloring problem br the given conflict graph. 
For some resource allocation problems, such as the classic dining philosophers, efficient 

solutions require an edge colorhg of the conflict graph. For this kind of problem, hd ing  

an optimum solution is equivaient to solving the edge sum coloring problem [2]. 

1.3 Notation and definit ions 

Our basic notation and terminoIogy reference is [38]. All the graphs we consider are 

simple undirected loopless, unless specified otherwise. We denote a g a ~ b  G with vertex 

set V and edge set E by G(V, E). A graph is a muftigrcrph if E is a family, rather than a 

set. The edge containing two vertices u and v is denoted by UV. By sire d a gaph, we 

mean the number of vertices of that graph, and is denoted by IGI. Two vertices u and 
v are adjacent or neighbors if UV E. We c d  the number of neighbors of vertex v, the 

degree of v,  and denote it by deg(v). The maximum and minimum degrees of a gaph 

are usudy denoted by A and b respectively. A graph is d e d  regular if aJl the vertices 

have the same degree, and is called k-regular if this degree is k. 3-regular graphs are 

sometimes called cubic graphs. A graph G'(V', Et) is a subgraph of G(V, E) if V' E V 
and Er C E. C is an induced scr6gmph of G if it is a subgraph of G and it contains all 

the edges UV, such that u, v E V', and UV E E. 



Two graphs G(V, E) and Gî(V', E') are isomorpliic if there exists a one-to-one and 

onto hinction f : V + V f  such that UV E E if and only if f (u)  f ( v )  E Er. The cartesian 
product of graphs G and H, written G x H, is the graph with vertex set V(G)  x V(H)  

specified by putting (u,v)  adjacent to (uf,v') if and only if (1) u = u' and v d  E E ( H ) ,  
or ( 2 )  v = v' and uu' E E(G). 

A graph is a complete graph or clique if for any pair u, v of vertices, UV E E. A graph 

is empty or an independent set if it has no edges. We denote the complete graph with 

n vertices, the path with n vertices, and the cycle with n vertices by K,, P,, and C,, 
respectively. By w(G) we mean the size of the maximum clique of the paph G. By the 
complement of a graph G(VT E), we mean the gaph G(v, E') where UV E E' if and only 

if uv E. A vertex having degree one, in a tree, is called a leaf. A vertex of a tree which 

is not a leaf is an internai vertex or internat node. 
A graph G(V, E) is chordal if it has no induced cycle of size greater than 3. A graph is 

a split graph if there is a partition of its vertices into a clique and an independent set. A 
set of intervals on the real line can be represented by a graph whose vertex set corresponds 

to the set of intends where two vertices are adjacent if and only if the corresponding 

intervals overlap. Such a graph is cailed an interval graph. If ad the intervals have the 

unit size then the associated interval graph is called unit interval gmph. Clearly both 

split graphs and interval graphs axe chordal. A rnatching is a set of edges such that no 

two edges in that set share a vertex. A matching is called a m ~ u m  matching if its 

size is the largest size amongst d l  matching of the graph. 

A coloring of a graph G(V, E) is a function f : V -+ N, where f ( v )  is cded  the color 

of vertex v ,  for every vertex v E V. A ~010nng is cded  proper if no two adjacent vertices 

have the same color. Graph G is k-colomble if there exists a proper coloring of G using 

at most k colors. A 2-colarable graph is called a bipartite graph. Similady, a k-partite 
gmph is a graph whidi is k-colorable. Therefore the vertex set of any k-partite graph c m  

be partitioned into k independent sets. A complete bipartite graph, is a bipartite graph 
in which the edge set contains d possible edges between the two parts of the graph. The 

chromatic number of graph G is the srnailest number k such that G is k-colorable, and 

is denoted by x(G). 

Similady, an edge colorhg is a function f : E -+ N, where f(e) is the color of edge 

e. A pmper edge coloring is an edge coloring such that no two edges that share a vertex 

have the same color. A Graph G is h-edge-colomble if there a g s t s  a pmper edge coloring 

of G using k colors. The chmmatic indcz of a graph is the minimum number k such that 

G is k-edgedorable and b denoted by $(G). The line gmph of a graph G(V, E) is the 
graph Gr(V', E'), such that for every e E E th- is a node w E V', and uv E E' if and 



Figure 1.3: A graph and its tree decomposition with width 2 

only if the corresponding edges in E share a vertex. CLearly the edge coloring of a graph 

is equivalent to the vertex coloring of the corresponding Line graph. The coloring number 

of a graph G, denoted by col(G), is defined to be the smallest number d such that there 
exists a linear ordering < of the vertex set where the back degree of every vertex u: which 
is I{v : v c U, UV E E)I, is strictly Iess than d. 

A tree decomposition of a graph G(V, E) is a pair (X, T), where T ( I ,  F )  is a tree, and 
X = {Xili E I )  is a family of subsets of V, one for each node of T, such that: 

a for each edge UV E E, there exists an i E I ,  such that v E Xi and u E Xi. 

for al1 à, j, k E I ,  if j is a vertex in T on the path between i and k then XinXk C Xi. 

The Goidth of a tree decomposition (X, 2') is dehed as rn-1 lXil - 1. The tme-width of 

a p p h  G, is the minimum width of (X, T), over all tree decompositions of G. 
A k-f n e  is defmed recursively as follows: 

a A clique of size k is a k-tree. 

O If T(V, E)  is a k-tree and C is a cornpiete subgraph of T on k vertices, then the 
graph G' = (V U {x} ,  E U {mlv E C)), where x 4 V is dso a k-tree. 



Note that 1-trees are exactly standard trees. Any subgraph of a k-tree is cailed a partial 

k-tee.  It is proved that partial k-trees are exactly the graphs with tree-width at most k 

[34l 
A well known clas of graphs is the cl- of pedect graphs. A graph G is perfect if 

and ody if for every induced subgraph H of G, we have x ( H )  = w ( H ) .  An important 

subclass of pedect graphs i s  cographs. G is a cogroph if and only if it doesn't have an 

induced 9. 
The foilowing results are immediate consequences of the defini tion of optimum vertex 

coloring . 

h c t  1.1 Let C be an optimum vertex coloring of G which uses k colors. Let's cal1 the 
set of vertices hauing color i in C, Ci, for 1 i 5 C. Then: 

2. Ci is a maximal independent set in the subgtaph G - Cj* 

1.4 Previous work 

As we mentioned before, the chromatic sum problem is introduced by Kubika in her 
Ph.D dissertation. In [29], Kubika and Schwenk prove the NP-completeness of the cho- 
matic sum problem for general graphs. On the other hand, they give a polynomid time 

algorithm to find the chromatic sum of trees. Also, for any integer h, they show how to 

constmct the smdest tree Tk, whose vertex strength is at least k. 

Theorem 1.2 [29] For any integer k, them is a trce of size 

tuhich needs ut feast h colors in uny optimal uertrz colorhg of it. 

As a consequence, they show: 



Corollary 1.3 [29] For any integer k, olmost every tree requins ut lemt k colors in any 

optimum vertex coloring of it. 

In [Il] Erdos et al. continue the study of graphs that require many colors in their 

optimum vertex colorings and give some other constructions to make such graphs. 
Erdos et. al [37] give some interesting tight bounds on the chromatic s u m  of a graph in 

tems of the numberof vertices and edges of the graph. They prove that C(G) 6 IV1 + 1 El. 
Also, they show that: 

Theorem 1.4 1371 For any connected graph G: 

These bounds are tight as they show there exist graphs that attain these bounds. 

In [l?] Hajiabolhassan et al. consider optimum vertex colorings of gaphs  which use 
the minimum number of colors, i.e optimum vertex colorings with s(G) colors. They 
prove a theorem similar to Brooks' theorern, by showing that s(G) 5 A if G is neither a 

complete graph nor an odd cycle. Furthemore, they improve this bound and show that: 

Theorem 1.5 [17] For any gmph G: 

As far as we know, this is the best bound for the strength of a graph. In t hat article, 
they conjecture: 

Conjecture 1.6 [17] For every p p h  G: 

The conjecture is aibxned for trees and is the best possible bound as proved by Jiang and 
West [26], where they show that for every integer k there exists a tree with A = 2k - 2 
whose strength is k. 

In [31] the sum colorhg problem restncted to the family of i n t e r d  graphs is studied. 

The s u m  coloring problem is NP-complete for interval graphs if the sizes of intervals are 
at least 4 (aee a b  reference 16 of [31]). They give an approximation algorithm that can 

be used to obtain a iower bound for C(G), where G is an interval graph. The idea behind 

this algorithm is as foilows: Let P be any optimum vertex coloring of G, k be the number 

of d o r s  used in P, and Ci be the set of vertices of G having color i, 1 5 i 5 k. Also, 
let Ai be a maximum independent set in G, CIearIy, it is impossible to color more than 



Al vertices wi th color 1, in any optimum vertex coloring of G. Therefore ICI 1 5 1 Ai 1. 
We can c d  Al, the largest 1-colorable subgraph of G, as weil. Ln general, let & be 

a subgraph of G which is i-colorable, and ha9 the maximum number of vertices among 

i-colorable subgraphs of G, for 1 i 5 x(G). So we have: 

Therefore, the best case (the case with the minimum sum of colors) is when we can have 

lAil nodes in the first i sets, 1 < i 5 x(G). In other words, when lCil = lAil - (Ai-ll. 
This represents the following lower bound on the chromatic sum of a gaph: 

Their algorithm cornputes the values of IAil, for an interval graph G, using a greedy 

method and a property of intenml graphs, called the consecutive 1's property. They also 

show that this algorithm gives the exact value of C(G) if G is a proper intervai graph, 

or more generally, if the size of each interval is at most 3. 

On the other hand, there are some similar results on the OCCP problem. Kroon et al. 

[30] study this problem for intenml graphs and trees. They give a linear time dgorithm 

for this problem restricted to trees. A h ,  they show that this problem is NP-complete for 

i n t e r d  graphs, even if there are four different values for color costs, and it is solvable in 

polynomid tirne if there are at most two different d u e s  for color costs. Findy, t hey give 

an integer linear program (ILP) formulation of this problem, and prove that the zereone 

matrix corresponding to the constraints of the ILP is perfect, if and oniy if G x Aivl does 

not contain an induced odd cycle of size 7 or more. 

Jansen [22] ha9 studied the OCCP problem for several classes of graphs. He proves 

that the OCCP problern for cographs and for graphs with tree-width at most k can 

be solved in time O(IVI + 1 El) and O(IV1 logk+' IVI), respectively. The dgorithm he 

developed for cographs consecutively fin& a maximum independent set in the remainder 
of the graph, assigns the cheapest color among the set of unused colors, and removes the 
independent set fiom the graph. This algorithm uses the cotre representation of the 

cographs, and produces x(G) sets. By Corneil et al. [8] we can find a cotree of a cogaph 
in linear tirne, 



For the case of graphs with bounded tree-width, he uses a dynamic programming 

method bas4  on a tree decomposition of the graph. Finding the tree decomposition of 
a graph with bounded tree-width can be solved in Linear tirne, as proved by Bodlaender 

[7]. Also, he uses the following lemma: 

Lemma 1.7 [22] For a gmph G(V, E )  with constant tne-width, there ezists an optimum 
uertez coloring f such that ut most O(1og IVI) colors a n  used. 

Let T ( I ,  F) be a tree decomposition of G, and for each node i E I ,  let be the set of 
di vertices in a set Xj, with j = i or j is a descendant of i in the rooted tree T. The 

algorithm cornputes a table minc;, for each node i E 1. if m is the number of allowed 

colon, then for each coloring f : Xi + {1,2,. . . , m), there is an entry in the table 
minci, fulfilling: 

minq( f )  = - mi- CC~I{YIY E W(Y) = i)l- 
t:K +{I ,2.-,m) , j ( ~ ) = J ( z ) v ~ € X i  j=l 

In other words, for each coloring f of Xi, minc;(f) denotes the minimum sum over aii 

colorings 7 of x, where f and f have the same color for each vertex x E Xi.  Using the 
above lemma, he shows how to compute the entries of the table for each node in time 

O(mk+' k2), and therefore the algorithm runs in time O((1og 1 1 VI). 
In the same article, he considers the ILP formulation of the problem, given by Sen et 

al. [35] and shows that the corresponding polyhedron contains only integral 011 extrema 

if and only if the graph G is a diamond (K4 - e) free chordal graph. On one hand he 

shows the NP-completeness of this problem on bipartite graphs and also permutation 
graphs, and on the other hand he proves that the OCCP problem can be solved for the 
complements of bipartite graphs in polynomial time using bipartite rnatching. 

Approximation algorithms for the s u m  coloring problem are studied in [28], [23],[2], 
[3]. In [28] it is shown that approximating the chromatic sum problem within an additive 

constant factor is NP-hard. Then, Bar-Noy et al. in [2] prove that the sum ~010ing 
problem can not be approximated within a factor dœC, for any c > O, unless NP = ZPP. 
A h ,  they prove that finding consecutive maximum independent sets and assigning the 

first available color to each gives a Capproximation to the sum coloring problem. As a 

consequeme of this theorem, we have a 47-approximation algorithm for the sum coloring 

problem for a family of graphs, whenever we have a 7-approximation aigorithm for the 

maximum independent set problem for that f d y .  Also, they show that their bound is 
tight within a factor 2. In other wotds, they show that there exists family of graphs for 
which the above algorithm is at least a 2 - a p p m ~ a t i o n  algorithm. For bipartite graphs, 



they prove that the foîlowing simple aigorithm is a &approximation for the chromatic 
sum: Consider the following two colorings and take the minimum of them. One is a 

Zcoloring of it . The other coloring colore a maximum independent set wi t h color 1, and 
then 2-colors the remaining vertices. The maximum independent set can be found in 

bipartite graphs uaing a matching algorithm. 
In [3] Bar-Noy et al. prove the hardness of approximating of the s u m  coloring problem 

for bipartite graphs. They prove that there exists an c > O such that there is no (1 + r)- 
approximation dgorithm for the sum coloring problem for bipartite graphs, unless P=NP. 
Also, they improve the previous ratio Tor bipartite graphs and give a  approximation 
algorithm for bipartite graphs. 

Jansen [23] has many approximation results for the OCCP problem. He proves that 
there exists no approximation dgorithm witb ratio 0(IV1°*5-e) for the OCCP problem 

restricted to bipartite graphs and interval graphs, unless P = NP. On the other hand, 

he gives algorithms for bipartite graphs and i n t e d  graphs that approximate the OCCP 
problem wi th ratio O( 1 V1°*5). Therefore, these are the best possible approximation algo- 
rithms for the OCCP problem for these classes of graphs. Finally he proves that there is 

no algorithm to approximate the OCCP problem with ratio O(IVI1-') for permutation 
graphs, split graphs, and therefore chordal graphs, unless P = NP. 

The only known results about the edge sum coloring problem appear in [17] and [2]. 
The edge sum coloring problem is introduced independently in both of thefie articles as 

the vertex sum coloring problem restricted to line graphs. Hajiabolhassan et al. in [Iï] 
introduce the notion of edge strength, and sirnilm to Vizing's theorem for chromatic 

index, they prove: 

Theorem 1.8 [17] For every graph G, st(G) 5 A + 1. 

Bar-noy et al. [2] prove that the edge sum coloring problem is NP-hard for multi- 

graphs. They consider a special kind of coloring, cded compact coloring in which every 

edge e with color i has neighboring edges with al1 colors 1,2,. . . , i - 1. They prove that 

any compact coloring is a 2-approximation of the edge sum coloring problem. 

1.5 Overview 

The main results of this thesis appear in chapters 2, 3 and 4. In chapter 2 we give some 
generai results on the sum colorhg problem. This includes the proof of NP-completeness 
of hding the vertex strength of grapk, which appears in section 2.1. We use the same 

technique used by Kubika and Schwenk [29] to  prove the NP-completeness of chromatic 



sum. In the next section, we give some uppv bounds on the strength of gaphs with 

s m d  chromatic number in terms of the size of the graph. By theorem 1.2, the strength 
of a bipartite graph, in particular a tree, can be arbitrary large. We show that it can 

not be larger than the logarithm of the size of the graph. Findy, in the l u t  section, 
we extend the K u b i  and Schwenk [29] result about the NP-completeness of the sum 
coloring problem and prove that this problem is NP-complete for the dass of split graphs. 

Chapter 3 provides some algorit hms for the sum coloring problem for some classes of 
graphs. As an h a t i v e  result, with respect to the NP-completeness result of the last 

sedion of chapter 2, we prove that the sum coloring problem can be solved in polynomial 
time if we bound by a constant the degrees of vertices of either part of a split graph. In 
the second section, we extend the result of Jaosen for OCCP of cographs by giving an 
algorithm to solve this problem for a more general class of graphs, which contain cographs, 

c d e d  Pd-reducible graphs. Finaliy, in the last section we show that the sum coloring 
problem can be solved efficiently for ch in  bipartite graphs and cobipartite graphs. 

Chapter 4 deals wi t h the edge surn coloring problem. In the first section, we prove the 
NP-completeness of this problem and also the edge strength problem for cubic graphs. 

In section 4.2, we give a polynomial time algorit hm to find the edge chromatic sum and 

an optimum edge surn coloring of a given tree. This algorithm c m  be extended to find 
an optimum edge sum coloring of weighted trees. In the next section, using Monadic 
Second Order Logic, we show that there exists a linear time algorithm to solve the edge 

sum coloring problem for partial k-trees wit h bounded degree, for fuced k. 
Finally, in the last chapter, we give our concluding remarks and some problems that 

are still Ieft open. These problems can be a starting point for future work in this area. 



Chapter 2 

General results on sum coloring 

In sum coloring of graphs, there are two parameters that we are interested in. One is 
the total sum of the costs of colors (the chromatic sum C(G) of the graph), which we 
try to minimize. The other one is the minimum number of colors used in an optimum 
vertex coloring, which is the vertex strength, s(G). We can study these parameters from 
two points of view: one is from the mathematical aspect, in which we can give the exact 

value or at least some bounds for these parameters. The other is from the dgorithmic 
aspect, in which we anaiyze the complexity of computing these parameten. 

In this chapter, we look at these parameters from both of these points of view. The 
first section proves that there exists no polynomial time algorithm that finds J(G) for 

graphs with A 5 6, unless P = NP. In the second section, we show that although 

the vertex strength of graphs with s m d  chromatic number might be much larger thaa 
their chromatic number, there are some logarithmic bounds in t ems  of the size of the 

graph for this parameter. Findy, we improve the NP-completeness result of Kubika and 
Schwenk [29] for computing the chromatic sum, by proving that it is NP-complete even 

for the restricted dass of split graphs. 

2.1 Complexity of finding the vertex strength 

Since the sum colorhg problern seems no easier than the chromatic number problem, 

one can expect that hding the vertex strength is NP-Hard. We prove that in fact it is 
NP-Hard to h d  the vertex strength even for a graph with A = 6. 

Our proof is very similm to the proof of Kubilta and Schwenk 1291 for proving the 
NP-completeness of bding the chromatic sum. We give a reduction b m  the vertex 

3-coioring problem restrided to the graphs with maximum degree 4. 
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Figure 2.1: A graph G and the cartesian product G x K3 

The instance and the question of vertex 3-coloring problem is stated as: 

Instance: A graph G with maximum degree 4. 

Question: 1s G 3-colorable? 

It is well known that the above restricted version of vertex coloring problem is NP- 
complete even for the class of planar graphs [15]. We state the vertex strength problem 
restricted to the class of graphs wi th maximum degree 6 as: 

Instance: A graph G with maximum degree 6. 

Question: 1s s(G) 5 3? 

Theorem 2.1 The vertex strength pmblem restricted to the class of gmphs with maxi- 
mum degree 6 is NP-Xard. 

Proof: We are going to reduce the vertex tc010nng of graphs with maximum degree 4 

problem to the vertex strength of graphs with maximum degree 6 problem. Consider an 

instance of the vertex coloring problem. Let G(F E )  be the graph of this instance. We 
want to know if x(G) < 3. 

Constnict the graph C ( V t ,  Et) as follows: Let Gi , 4, G3 be 3 copies of the graph 

G, and let vi be the vertex of graph Ci which corresponds to vertex v of the p p h  G. 
Let V' = eZi K, where l( is the vertex set of Gi. Put aIl the edges of each Ci in Er 
(1 i 5 3). Ah, for each vertex v E G, add the edges {vlv2, ulv3, ~ 2 ~ 3 )  to E.. In other 
words, C is the cartesian product G x Ka. See figure 2.1. 

Since the degree of each vertex in G is at most 4, and each vi E C is connecteci to 
two more vertices, thdore  the maximum degree of C is at most 6. I t t  trivial that we 



c m  constnid G' in polynomial time. Now we daim that: 

Fint suppose that s ( C )  = 3. It means that there is an optimum vertex coloring of 
G' in whieh just 3 colors are used. Since G is a subgraph of G', this coloring induces also 

a proper 5coloring for G. Therefore x(G) 5 3. 

Now assume that x(G) 5 3. Therefore we can color Gi with 3 colors, independently. 
To obtain a propu 3-coloring of G', we use the same partition of vertices of GI for G2 and 

Ga, with the modification that the color of the j'th clam of Gi, is ( i  + j - 2 mod 3) + 1, 
instead of j. Thus each Gi (1 < i < 3) is colored with colors 1,2,3, and also this is a 

proper coloring of Gr. It's not difficult to see that this is an optimum vertex coloring 
for G'. This follows since each complete subgraph of size 3 of C, which contains the 
corresponding vertices of copies of G, requires at least 3 colors, in any proper c010hg of 
G'. In this coloring each of these complete subgraphs are colored with colors 1,2,3, which 

clearly gives the least possible sum of colon. Thus this is an optimum vertex coloring of 

Gr, and clearly uses the least possible number of colors. Therefore s(G') = 3. rn 
Using this method and by reduction from k-color problem, for k > 3, we can prove 

that : 

Corollary 2.2 For a giuen p p h  G, it is NP-complete to determine if s(G) 5 k, for 
anyfized k 2 3. 

We don't know the time complexity of deciding if the strength of a given graph is 
equd to 2, but we expect it to be NP-complete. 

2.2 Some bounds on the strength of graphs with 
small chromatic number 

The notion of vertex strength of graphs has been studied by Erdos [Il], K u b k  and 

Schwenk [29], and Hajiabolhassan et d. [l?]. It's not difficult to see that s(G) 5 A + 1. 
Hajiabolhassan et al. [17] give an andogous theorem to Brooks' theorem, for the vertex 

strength of a graph: 

Theonm 2.8 [17] Let G be o connected gmph. Then r(G) = A + 1 if and only ifG is 
the cornfite graph or an odd eycle. 



This theorem implies Brooks' theorern. Also, they improved the above bound to 

[ w L ( G ) ~ A ( G ~ l ,  where cd(G) is the coloring number of G. (theorem 1.5). 

It is welI known that aside from regular graphe, x(G) 5 col(G) 5 A. They conjec- 

tured that we can replace the coloring number in the above theorem by the chromatic 

number. This conjecture is tme for trees and foiiows immediately from the above t h e  
orem and the fact that the coloring number of every tree is 2. This bound is sharp for 
trees as proved by Jiang and West [26]. However, the conjecture is still open even for the 

class of bipartite graphs. 
Here we prove that for the class of graphs with chromatic number at most 4, the vertex 

strength is in O(log n). In particuiar we prove that , for bipartite graphs s(G) < log, n, 
for tripartite graphs s(G) 5 Slog,(an + 1) where a = fi - 1, and for graphs with 

chromatic number at rnost 4, s(G) 5 4 Log,(pn + 2), where /3 = 2t - 1. These bounds 

are interesting since in many cases, such ac complete bipartite graphs and regular gaphs 
with high degree, they are better than the only known bounds. Remember that the 

chromatic sum problem restricted to bipartite graphs is NP-complete [3]. Moreover, we 
prove that our bounds are sharp. In particulat, we prove that for any k, there exists a 

tree whose strength is k and bas at most ak vertices, where a 5 2 + fi. This means t hat 
the order of the strength of trees captures the upper bound for the strength of bipartite 

grap hs. 

Theorem 2.4 If G is a bipartite gmph, then: 

s(G) < log, n. 

Proof: Assume that G is a bipartite graph and s(G) = S. It's trivial that s 2 2. Ifs = 2 
then there is nothing to prove. So assume that s > 2. Let P be any optimum vertex 

coloring of G using s colors. C d  the set of vertices having color i in this coloring Ci, 
1 5 i 5 S. It is clear that lCil 2 1 2 1,l < i < S. We use the foliowing two lemmas 

in our proof: 

Lemrna 2.5 For any three consecutive cl- of coiors Ci,Ci+i,Ci+2 of coloring P, wherc 
1 si 5 s - 2 ,  ute houe: 

Ici( 2 ICi+,l+ 3lC,,l+ 2- 

Proof: Let G' be the induced subgraph of G on the vertex set Ci U Ci+i U Ci+*. Note 

that G is also bipartite. Thus we can recolor it with two colors i and i + 1. The sum of 
colors of the vertices of C in this coloring is at most 



Note that by this recoloring we obtain another proper coloring of G using s - 1 colors. 

Because by this recoloring we can reduce the number of colors used in the ~010nng of G, 
and since s is the minimum number of colors in an optimum sum coloring of G, we must 

have: 

Lemma 2.6 For every color class i of the coloring P ,  such that i < s - 1, we have: 

Proof: We have at least one vertex of each color. Therefore ICJ 2 1 and IC.-i 1 > 1. It 
foiiows from the previous Iemma that 1 2 6 and 1C,-3 1 2 11. Now we use simple 

backward induction. The base is for s - 2 and s - 3, and the lemma is correct. Assume 

that i 5 s - 4, and Ci+î 2 2"-'-' and Ci+2 2 28-i-2. SO: 

The total number of vertices in G is equal to the sum of the number of vertices of Ci, 
for 1 < i 5 S. Therefore: 

Note that we can do better in lemma 2.5 and prove that: 

Also we can fmd better lower bounds for the size of Ci by solving the recursive relation 

of lemma 2.5, but this doesn't change the final bound for s more than a mal1 constant 

factor, and therefore, the strength will be in O(log n). 

For the case of graphs with chromatic number 3 or 4, we can find similar bounds. Let 

G be a graph whoee strength is -ter than its chromatic number. Using the technique 

of lemma 2.5, we can easily prove the following inequalities for the size of color dass Ci: 
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Lemma 2.7 For the gtaph G, mheîe s(G) > x(G): 

We know that ICa-jl 2 1, O 5 j 5 3. By solving the recursive relation for lCil in lemma 
2.7, we obtain the following bounds: 

Lemma 2.8 For the gmph G, when  s(G) > x(G): 

If x(G) = 3 then: lCil 2 2 9 ,  for i < -3 .  

I fx(G) = 4 then: lCil 2 2*, for i < s - 4. 

Therefore, for the case x(G) = 3 we have: 

Let cr = fi - 1. Since u ( 3 a  - 4) < 1, t herefore: 

Hence: 

Theorem 2.9 For a graph G, when x(G) = 3, we have: 

Thedore: 

Theorem 2.10 For the gropli G, when x(G) = 4, me have: 

s(G) 1 4 log2(Pn + 2) 

m h e n p  =2f  - 1. 



Unfortunately, we couldn't use this method to obtain a generd bound in terms of n 
for the strength of k-partite graphs, for fixed k, but we guess that there exists a simililr 
bound for the case of k-partite gaphs. 

Conjecture 2.11 If G W a gmph when x(G) -< kt /or some f ied k, then s(G) E 

O(10g n) . 

Now we prove that the bounds we have given are tight. To do so we show that for 

any fixed k, there exists a tree whose strength is k, such that k E B(logn), where n 
is the number of vertices. CVe use the same family of trees that Kubika and Schwenk 

introduced in [29]. They showed how to construct a tree Tk which is the smdest tree 

whose strength is at least k, k 2 3. They proved that the number of vertices of this tree 
is: 

Let a = 2 + fi. Therefore: 

a k - ~  logn + 
n = ITkI - ==+ \IZn 5 a'-' a Jz 

- <CC-1. 
log a 

Hence, we've proved t hat : 

Theorem 2.12 For any given k, there exist a tree whose strength is k and whose number 

of uertices is in O(2'). 

2.3 Complexity of vertex s u m  coloring 

Fiding the chromatic sum or finding an optimum vertex coloring of a graph, seems to 
be no easier than the ordinary vertex coloring. Kubika and Schwenk [29] proved that the 

vertex sum coloring problem is NP-complete for arbitrary graphs. On the other hand, 

there are some classes of graphs where the chromatic number can be found in polynom*ai 

time, and sometimes very easily, whereas finding their chromatic sum is NP-complete. 
I n t e d  graphs are such a f d y  [3l], [16]. 

In this section we prove that the vertex aum coloring problem is NP-complete for 
the dass of split graphs, a snbdass of chordal graphs. Therefore, o u  result proves the 
NP-completenem of the pmblem for the dass of chordal graphs, as weU. Also, since 



the OCCP formulation is a generalization of the one we are using, our NP-completenesa 
result implies Jansen's result, for the dasa of split graphs. Note that the ordinary vertex 
coloring problem c m  be solved in polynomid time for the dass of chordal graphs. This 

is another example of a class of graphs, where vertex coloring is in P, whereas vertex sum 

coloring ie NP-complete. 

Recall the definition of split graphs fiom section 1.3. Split graphs are both chordal 
and cochordal, as follows from the following theorem: 

Theorem 2.13 [19] A graph G ia q l i t  if and only if G and G are chordol. 

We prove the NP-completeness of the sum coloring problem for split graphs by re- 

duction from the exact cover by 3-sets problem. The instance and the question of this 
problem can be stated as follows: 

Instance: Set X with 39 elements, and a collection C of Selement subsets of X. 

Question: Does C contain an exact cover for X? In other words, is there a subset 

C' C C, such that every element of X occurs in exactly one member of C' ? 

This problem is known to be NP-cornplete [15]. To prove the main result of this 

section, firat we state the instance and the question of the chromatic sum problem: 

Instance: A graph G, and a positive integer k. 

Question: 1s it true that C(G) 5 k? 

Note that if there exists a polynomial time algorithm for the above problem, then 

there exists a polynomial time algorithru, which can find the exact d u e  of C(G). 
First we prove a generd result for split graphs. 

Lemma 2.14 If G(C u 1, E )  is a split gmph, when C is the eomplete part and I is the 
independent part, and ICI = nc and 111 = nr, then s(G) 5 nc + 1. 
Proof: Consider an optimum vertex coloring of G. Since C is a clique, all vertices in C 
m u t  have different colors. Let i be the srnailest positive number such that none of the 

vertices of C have coior i. In this case, no vertex in I can have a color greater than i, 
otherwise we can sirnply change the color of that vertex to i. So the only colors (possibly) 

used in I are 1,2, . . . , i. It follows that t h e  can't be any color greater than nc + 1 in 

C, othemise there is aome color i+ z (1 5 z 5 nc - i + 1) that is not used in C, and we 

can simply change the coIor p a t e r  than nc f 1 to i + z. I 
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Corollary 2.15 Then is an optimum vertez coloring of G such that the colors used in 
that coloring are from the set {1,2,. . . , nc + 1). 

We state the main result of this section in the following theorem. 

Theorem 2.16 The chromatic wm problem ia NP-complete for the class of split gnrpha. 

Proot: It is not hard to see that the chromatic sum problem is in NP, since we c m  

easily verify in polynomial time whether a given coloring is proper or not , and if its total 

sum of colors is less than k. 
To prove the completeness, suppose that we are given an instance of the Exact 

Couer 6y 9-sets problem. We have the set X = {xi,x2,. . . ,x%), and collection C = 

{cl, cg, . . . , ) , and we want to know if t here exists a collection Cr, such t hat each ele- 

ment x; E X1 occurs exactly once in C'. Construct the split graph G(V, E) as follows: 

for each t i  (1 5 i < 3q) create vertex v,, and for each cj (1 5 i 5 rn) create ver- 

tex vc, in G. Therefore V = {v,, , v,,, . . . , v,,,, v,, , v,, . . . , ve,). For any two non-equal 

i, j E {1,2,. . . , m), put an edge between vci and v , .  Also, put an edge between v, and 

u,, , if and only if xi $! cj. Denote the set of vertices {v,, , us,, . . . , v,,) by Vx, and the 
set of vertices {v,, , v, , . . . , v,, ), by Vc . 

We assume that rn > 9, otherwise we can add some dummy vertices to the part 

Vc, and connect them to d the vertices in Vc, and in Vx. We claim that: 

1 
C(G) = -[m(rn + 1) + 3q(q + 1)] there exists such a C'. 

2 
Tt follows frorn the construction of G, that it is a split graph, since Vc is a clique, and 

Vx is an independent set. 
Assume t hat t here exists such a Cr. Therefore, t here are q vertices in Vc , ul , v2, . . . , v,, 

such that vi is not adjacent to vil, vil, vis in Vx, and vij # vkl if i # k and 1 5 j, I 3. So 

we can color G as follows: assign color i to the vertex vi (1 $ i 5 q), and to the vertices 

in Vx that are not adjacent to it, which are vil,vil, via. Assign colors q+ 1,. . . ,m to the 

r a t  of the vertices in Vc. C d  this coloring A. Let S = i[m(m + 1) + 3q(q + l)]. Fust 

of d, it is dear that A is a proper coloring and the sum of this coloring is equal to S. 
We show that there can't be any coloring with a total eum las than S. 

Let P be an optimum vertex coloring of G, such that color i (1 5 i 5 rn + 1) 
is not used by any vertex in Vc. By corollary 2.15, the set of colors used by Vc is 

{1 ,2 , . . . , i - l? i+ l , . . . ,m+l} .  

Lemma 2.17 If i < q, then the total cost of the colonng P ,  is at least: 
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Proof: The cost of colors used by vertices in Vc is clearly +m -i + 1. Consider 
the arrangement of vertices of Vc, in the order of t heir color value VI, v2, . . . , v,. The 
only vertices in Vx that c m  have color 1, are those three vertices that are not connected 

to VI. Similady, for any color j < i, there are only three vertices in Vx that can have 

color j .  Thus for any color j, (1 5 j 5 i - l), there are at most three vertices in V' that 
can have that color, and the rest of the vertices in Vx must be colored with color i. The 
total sum of colors is obtained by a simple calculation. I 

a t  1 Let L = rn - i + 1 + + 3i(q - i + 1). Consider the coloring P, and assume 

that i 5 g. Since rn > 9, therefore L > v. Thus, the s u m  of the coloring P is 

more t han S. Now, let's assume t hat i > q. So al1 colors 1,2, . . . , q are used by vertices 
in Vc. In the best case, for the coloring of V', there are three vertices with color j, for 
each 1 5 j 5 q, and for the ~010nng of Vc, just colors 1,2, . . . , m are used. The sum of 

this ~010nng is exactly S and cm be obtained only if the vertices of Vx cm be colored 
in this way, equivalently, there is a collection V'$ C Vc, such that IV61 = q, and Vi is a 

vertex cover for V'. This proves that the sum of any coloring other than A is more thm 
S, and we can obtain A only if there exists such a coveriug. 



Chapter 3 

Algorithms for vertex sum coloring 

The last chapter provided some theoretical results on the strength and chromatic sum 

of a graph. In this chapter we give some algorithms to solve the sum coloring problem, 

for some special classes of graphs. In contrast with the result of the last section of the 

previous chapter, in the first section we give an dgorithm to solve the mm coloring 

problern of split graphs with some degree bounds. Also, we extend the result of Jansen 

on cographs, and give a polynornid time algorithm for a more general class of graphs, 

called Pd-ceducible graphs, which contains the class of cographs. R e d  that the sum 
c010nng problem is NP-complete for the important class of bipartite graphs. Therefore, 

it is interesting to consider restrictions on bipartite graphs for which we can obtain a 

polynomial time algorithm for the sum coloring problem. In the last section, we consider 

chah bipartite graphs and cobipartite graphs and give polynomial algorithms for each 

class to h d  an optimum sum coloring. 

3.1 Vertex sum coloring of k-split graphs 

In the last section of the previous chapter, we showed that for any split graph G(CUI, E), 
we have s(G) tac + 1, where nc is the size of the clique part of G. Since C is a clique, 

it is trivial that s(G) 2 nc. The following lemma which holds for any split graph will be 

used later in the design of algorithms for sum coloring of some subclasses of split graphs. 

Lemma 3.1 For split p p h  G(C u I ,  E ) ,  whem ICI = nc and II[ = ni, ~e have: 

(i) C(G) 5 +ne + n ~ *  

(ii) Ifs(G) = nc + 1 thcn C(G) = + nc + nr. 
Proof: (i) Consider the vertex mm coloring of G in which dL of the vertices of I 

have color 1, and the vertices of C are colored by colors 2,3, . . . , ne + 1. It is trivial t hat 
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t his is a proper coloring and the total sum of colors is 

(ii) If s(G) = nc + 1 then there are nc + 1 vertices such that the set of colors of these 
vertices is exadiy {1,2,. . . , nc + 11, and the total sum of the colors of the other vertices 
is at least nr - 1. Therefore: 

By part (i) C(G) 5 + nc + nl. Hence: C(G) = 2 + nc + nl as required. 
D 

By theorern 2.16 we see that the vertex sum coloring problem is NP-complete for the 
class of split graphs, and as a consequence, for the clas of chordal graphs. The natural 
question that cornes to mind is: for which classes of chordal graphs can we solve the 
vertex sum coloring problem efficiently ? As we mentioned in section 1.4 the vertex s u m  

coloring problem is in P for proper i n t e d  graphs. Here we study some restrictions of 

split gsphs  where the degree of each vertex in the independent set or in the clique part 

is bounded. 

Definition 3.2 A split graph G(C U I ,  E ) ,  where C is a complete subgraph and I an 

independent set, is a k-split p p h  if the d e p e  of each vertex is bounded by  k .  It is called 
a kpsplit graph if the degree of each uertez of I is  ut most k. It is a kc-split graph if the 

d e p e  of each vertex of C is at most k. 

From the definition, it follows that a graph is k-split if and only if it is kI-split and 
also kc-split. Here, we give polynomid time algorithms to find the chromatic sum and 

dso an optimum vertex sum coloring of kpsplit and kc-split graphs, for fixed k. 

3.1.1 Algorithm for kI-split graphs 

Let G(CU I ,  E) be a kI-split graph where ICI = nc, 11 1 = nr. By lemma 2.14 and the fact 
that C is a clique of size nc, we have: nc s(G) 5 nc + 1. Lemma 3.1 gives the exact 

value of L(G) and its proof gives an optimum vertex colorhg for the case s(G) = nc + 1. 
Now suppose that 4G) = nc. We denote the set of neighbors of a vertex c E C that 

are in set I by Nt(c), Let P be an optimum coloring of G with nc colors. CLearly C is 
colored with colors 1,2,. . . , nc. Let v, be the vertex of C that has color i in P. The 
set of vertices in I that have color 1 are exactly those vertices that are not connected 
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to v,, , i.e the color of vertices in NI(v,) is at least 2. Among them, those that are not 

connected to v, have color 2, and the remainder have color at least 3. In general, the 

number of vertices having color greater t han i in 1, is: 

Note that since the degree of each vertex in I is bounded by k, no vertex in I ha9 a 

color greater than k + 1 in any optimum vertex coloring of G. It can be verified that the 

total s u m  of colors in I is: 

There are ni vertices in I that have color greater than or equal to 1. Let: 

Therefore, the total sum of colors in I is nI + S and the totai sum of colors of coloring 

P is: 

Therefore, to find an optimum vertex coloring of G, using nc coiors, we must minimize 

the t e m  S. In other words, the vertices v,, , v,, . . . , v,, should be selected in such a way 

that the sum S is minimized amongst a l l  possible assignment of colors 1,2,. . . , nc to 
the vertices of C. We can simply consider al1 permutations r with k elements, such 

that each element is a vertex of C, and compute the value of S for each permutation by 

assigning color i to the vertex v,(, of C, and then taking the minimum over d values of 

S. The number of such permutations is O(nck). The chromatic sum of G is the minimum 

between this value and the sum of the optimum vertex coloring of G using nc + 1 colors. 

Therefore, we have proved the following theorem: 

Theorem 3.3 Let G(C U I ,  E )  be a kI-qli t  p p h ,  for j ù e d  k. Then the chromatic mm 
and a h  an optimum vert- colorhg of G can be computed in O(nck), where nc = ICI. 

3.1.2 Algorit hm for kC-split graphs 

Let G(CU I ,  E )  be a kc-split graph, where ICI = nc and 111 = nr. Again, if s(G) = nc + 1 
then we know the exact value of C(G) by lemma 3.1. Assume that s(G) = nc and consider 

an optimum vertex coloring of G, cailed P. Let v, be the vertex in C that has color 1 in 
P. Clearly every vertex in I - Nr(v, ) has a h  color 1. We show that no vertex in Nr(v, ) 
can have a color greater than k + 1. Otherwise, let v, be a vertex in NI(vq ) with color 
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x, such that k + 1 < x < nc. Therefore there exists a color y such that y 5 k + 1 and y 
has not appeared on any vertex in NI(v,). Let u, and ui be the vertices of C having 
colors x and y, respectively. By exchanging the colon, of u,, and u,, we can assign color 

y to v,. This exchange reduces the total sum of the colors of P, which is a contradiction. 
So, to h d  an optimum coloring of G, using nc colors, we select one of the vertices of 

C, cal1 W., , and wsign color 1 to it and to d vertices in I - NI(vCl). Then we consider 
a l l  possible assignments of colors 2,3, . . . , k + 1 to the vertices of NI (v,, ) . Note that the 

degree of u,, is at most k. Since k is fixed, there are constant number of such assignments. 
Also, for each assignment of colors to the vertices in Nf(v,), we have to find a coloring 
for the uncolored vertices of C such that is feadible to the coloring of Nr(vcl). To do 

so we constmct a bipartite graph Gt(X U Y, Er), such that X = 1x1, xz, . . . , x,,,-~), 
Y = {y2,93,. ..,Y~+~), and Xiyj E E' if and only if there is no edge between the ith 
uncolored vertex of C and the vertex in NI (v,, ) with color j. It's not S c u l t  to see that 
using a bipartite matching in G' that covers al1 the vertices in Y (if there exists such a 

matching), we can find those vertices of C that will have colors 2,3,. . . , k + 1, and then 
color the other vertices of C with colors k+2, .  . . , nc arbitrarily. By taking the minimum 

between the total sum of the colors of each of these colorings, we find the sum of the 
optimum coloring using nc colors. Finaily, we have to take the minimum between this 
amount and the total s u m  of the coloring using nc + 1 colors. 

Finding a maximum matching in C can be done in time O(nc), by applying the 

augmenting path algorithm k times. Therefore, for each assignment of colors to the 
vertices in Nt(v,,) we spend O(nc) time to complete the coloring. Also, at the first 
stage, there are nc choices for seleding the vertex v,, . Thus, overall we spend O($) to 
find the minimum sum of colors between all colorings using nc colors. 

Theonm 3.4 If G(C U I ,  E )  is a kc-split graph, for fied k, then the chromotic sum 

and also an optimum verlez coloring of G can be computed in O(ncZ), when ICI = nc. 

Comllary 3.5 The chromatic mm of k-split grophs con be computed in time O(nck). 

Proot: Since any k-split graph is a k1-spiit and a kc-split graph, the r d t  follows from 

theorems 3.3 and 3.4. 

3.2 Vertex sum coloring of P4-reducible graphs 

Cographs were rediscovered several times and under dinerent names and definitions, 
wbich are aII eqnivalent. Some of these names are: De-pphs ,  Henditary Dacey grcrpirs, 



and 2-parity grrrpAs. Many problems that are NP-complete for arbitrary graphs have 

polynomial time solutions, when restricted to the class of cographs. Most of these dg* 

rithms use the foilowing recursive definition of cographs: 

Theorem 3.6 Let G(V, E )  Le a p p h  

2. If Gl(V;, El) and &(h, E2) are cogmphs, then G ( h  U i& El U E2) is a cogruph. 

The operation for making G from CI and G2 in the second part of the theorem, is 

called union, and the operation in the third part, is c d e d  join. We can dso replace the 

third operation in this theorem with a complement operation. 

So a cograph is a graph that can be obtained fiom single vertices by a finite sequence 

of union and join operations. 

Jansen [22] gives an algorithm for solving the OCCP problem for cographs. Clearly, 

we can solve the sum coloring problem for cographs using this aigorithm. We extend this 

result by giving a polynomial time algorithm for finding the optimum vertex coloring of 
the class of PI-reducible graphs, which is a superclass of cographs. PI-reducible graphs 

were introduced by Jamison and Olariu [19] as a generalization of cographs: 

Definition 3.7 A gmph G is Pd-wducible if every vertex belongs to ut most one PA. 

Our r d t  is interesting since P4-reducible graphs form a proper superset of cographs 

and a proper subset of permutation graphs, and by Jansen [22] the OCCP problem is 

NP-complete for permutation graphs. As fat as we know, the time complexity of the 

sum coloring problem is not known for permutation graphs, but we expect it to be NP- 
complete. 

Similar to  cographs, P4-reduci ble graphs have aiso a recursive definition. Before giving 
this definition as a theorern, we define another type of operation on graphs. 

Definition 8.8 Let G(V, E )  be a graph arch that two adjacent uertices b and c in V 
are each adjacent to ail other uertices in V .  We define the add tail operation on G, &y 

conneding an addiLional vertex u tu b and an additional uertez d to c. The resulting 

gmplr is 

G = (V u {a, 4, E u {ab, cd)). 
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Jamison and Olariu [19] proved the following theorern : 

Theorem 3.9 G ie a PI-reducible gmph i/ and only i f  if can 6e obtained fiom a single 

vertez by  a finite sequence of union, join and add tail operationa. 

For every class of graphs that has a recunrive definition using some predehed opera- 

tions, (like cographs and P4-reducible), there is a natural way of associating a tree, whose 

nodes correspond to the operations used in constnicting the graph, and whose leaves are 

precisely the vertices of the graph. We call the corresponding tree of cographs, a cotree, 

and the corresponding tree of P4-reducible graphs, a pr-tne. If v is an intemal node of a 

pr-tree, we c d  the subgraph induced by the l e m  of the subtree with root v, GqV). For 

the pr-tree T of graph G, an intemal node v is labeled union, join or add tail according 

to the following d e :  

union 8 GT(V) is discomected 

join iff Er(,) is disconnected 
addtoil ot herwise. 

Corneil, Perl, Stewart [8] give a linear time recognition algorithm for cographs. If G 
is a cograph, this algonthm also gives the cotree of G. Also a linear time recognition 

algorithm for PI-reducible gaphs is in Jamison and Olariu [20] which also produces the 
corresponding pr-tree. 

For our problem, we assume that a PA-reducible g a p h  G with its pr-tree is given and 

we want to find an optimum vertex coloring. 

3.2.1 Max-IS Algorit hm 

The algorithm we present, solves the OCCP problem, which is a more general problem 

and can be used to solve the sum coloring problem by letting the color costs be 1,2, . . . , n. 

A mMmum independent set partitioning (Max-ISP) is a partitioning of the vertices 
into a sequence of independent sets such that each independent set is a maximum inde- 
pendent set in the remainder of the graph. That is, if we call the ith independent set in the 

sequence b:, then bi is a maximum independent set of vertices of G[V - { h ~ b ~ .  . . , bi-a)]. 
A maximal independent set partitioning is defined similarly, where each independent set 

is a maximal independent set in the remainder of the graph. The partitioning of vertices 
that the algorithm nnds is a maximum independent set partitioning (Max-ISP), and we 

call the algorithm Ma-IS. We wilI show that it is enough to find a Max-ISP for G and 
assign color to the vertices of the class R.. 
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The algorithm works recursively on the pr-tree T of G. It starts from the root of T, 
and goes down the tree. The general step of the algorithm hao the foilowing input and 
output: 

Input: A node v of T, and T(v) ,  the subtree rooted at v. 

Output: A Max-ISP of GqV)- 

The base case of the algorithm is when v is a leaf, and the Max-ISP of a leaf is the leaf 
itself. Now we dehe  the d e s  of the algorithm when v is an interna1 node or the rwt. 

Assume that the number of children of v is m (m 2 4). C d  its children wl,  w2,. . . w,. 

We have three cases for the type of the node v:  

a v is a union node: 

Therefore the subgraph GT(Vl is disconnected. Find the Max-ISP of each of the 

subgraphs GT(wi), GT(-), . . . , GT(,,) recursively. C d  the j'th independent set of 

the Max-ISP of GT(wi), bii, a ~ d  let q denote the number of independent sets in 

GT(wi). Then the j'th independent set of the Max-ISP of GT(V), denoted by bj, will 
be r=, bij. Note that b, will be empty, if j > si. So by this definition, the number 

of maximum independent sets Found for GT(V), is equal to ~ u x { s ~ ) ~ < ~ < ~ .  

v is a join node: 

Thus GT(vl is the join of the subgraphs GT(u>i), GT(urr), . . . , GT(w,,,). Again, find the 

Max-ISP of each of these subgraphs recursively. As before, c d  the j'th indepen- 

dent set of the Max-ISP of GT(wi), bij, and let si denote the number of indepen- 

dent sets in GT(tui). The total number of independent sets over al1 the subgraphs 

GT(~ ,  1, G T ( ~ ) ,  . . . , GT(w,,,), wiU be Cg, si = S. Sort ail of these independent sets 
by their increasing size and return the sorted Est. 

0 v is an add tail node: 

In this case, v has two ehildren, w1 and w2, one corresponds to a graph consisting of 

two non-adjacent vertices a and d, and the other one corresponds to a PI-redueible 

graph. Let's assume, without loss of generality, that GT(wi) is the one having a and 

d, and let the vertices of GT(iur) that are comected to a and d,  be b and c reapee- 

tively. Fiid the Max-ISP of GT(-) reeursively. Since b and c are each adjacent to 

all other vertices of GT(*), each of them is itseif a maximum independent set in 
this partitioning, and of course has size one. So we can reorder (to be proven later) 

the sequence of Max-ISP of GT(,) such that these two independent sets are at the 
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end of this sequence. In other words, we can change these two independent sets 

with the last two in the sequence of Max-ISP, and it will be a Max-ISP as well. 

Now, to find a Max-ISP for GT(ul, we continue in the following two cases: 

- If the number of independent sets of Gqurr) is greater thsn two, then add a 
and d to the first independent set class and return. 

- If the number of independent sets of GT(w) is equd to two, then add a to the 
set containing vertex c, and add d to the set containing vertex b, and return. 

After finding the Max-ISP for the graph G, the algorithm assigns color cl, which has 

the least cost value, to the f i rst  independent set in the sequence, cz to the second one, 

and so on. We daim that this coloring is an optimum vertex colorhg of G with cost 

values Cl, c2,. . . , &. 

3.2.2 Correct ness of the Max-IS algorit hm 

In this section we prove the correctness of the algorithm. To do so, we first prove some 

lemmas, which are used in the main theorem of this subsection. The second one proves 
the correctness of the main part of the algorithm, which is finding a Max-ISP for G. 

Lemma 3.10 Let G Be on arbitrary graph. Then: 

a If G is diaconnected, then its chromatic number is equal to the maximum of the 

chromatic numbers of i ts components. 

a If G is the join of some smaller subgraph, then its chmmatic nu,mber is equal Co 

the sum of the chromatic numbers of those subgraphs. 

Proof: The &st part is trivial. If G is the join of some subgraphs, Say Gi, G2,. . . , Gçt 
then no two vertices from two distinct Gi's can have the same color in any proper coloring 

of G. Therefore the dass of colors used in each subgraph Gi is dinerent than the colors 
used for any other Gj (i  # j). Thus we need at le& CL, x(Gi) colors for a proper 
coloring of G. 

Lemma 3.11 If G is a PA-nducible gmph and T *T the conrsponding pr-tree, then the 
algorithm finds a Mm-ISP for G. 

Proof: W e  prove this lemma by induction on the size of G. The base case is when 
IGl= 1, and dearly the algorithm works conect1y. Now suppose that the algorithm h d s  
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a Max-ISP for d PI-teducible graphs of size smaller than n, and let IGI = n. Consider 
node r, the root of tree T, and its ehildren w i ,  tu*, . . . , w,. We have three cases for the 

type of r: 

a r is a union node: 

So G is the union of the subgraphs GT(,,), GT(lVI), . . . , GT(wm). The algorithm h d s  
a Max-ISP for each of these subgraphs recursively, which is correct by the induc- 

tion hypothesis, because d of them have smder size t han IGI. Recall fiom the 
algorithm that the j'th independent set of graph GT(=,) is cdled bij- Because G is 
discomected, any maximum independent set of G restricted to a component of it 

induces a maximum independent set. Thus r=, bii is a maximum independent set 
of G. In general, &, b, is a maximum independent set of G - { b l ,  b, . . . , bj - l )  
and hence the algorithm finds a Max-ISP for G in this case. 

0 r is a join node: So G is the join of the subgraphs GT(-), GT(w),. . . , GT(wm). 
Again, by the induction hypothesis the algorithm h d s  a Max-ISP for each of 
these subgraphs recursively. Since G is the join of GT(Ui 1, GT(w 1, . . . , GT(w,,,), any 
independent set, and in particular any maximum independent set of G, will be 

contained completely in one of these subgraphs. Therefore, each independent set 
in any Max-ISP of G is a maximum independent set in the remainder of one of its 
components. Thus, each 6, wiil be an independent set in a Max-ISP of G. So it 's 

enough to sort dl of them by their size and the resulting sequence is a Max-ISP 

for G. 

a r is an add tail node: Recd the part of the Max-IS algorithm where the interna1 

node is an add tail node. So r has two children, wi and ru*, where GT(wl) is just two 
non-adjacent vertices. B y the induction hypot hesis, the algorit hm finds a Max-ISP 
for GT(w). Since b and c are adjacent to all other vertices in GT(w), each of them 

will be a maximum independent set in the Max-ISP of GT(+ 

If there is any vertex other than b and c in GT(un), then we can put the independent 
sets of b and c at the end of the Max-ISP of GT(lUI). h, O and d are not adjacent 

to any vertex, other than b and c. Thus the maximum independent set of G will 

contain the maximum independent set of GT(IUI), which is neither {b) nor {cl, union 

{a, dl*  
If there is no vertex, other than b and c in GT(s), then the maximum independent 
sets of G are just {a, c} and {b, 4. So in both cases, the algorithm fin& a Max-ISP 
for G. 
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Therefixe, in all of these three cases for the type of root of T, the Mau-IS algorithm 
fin& a Max-ISP for G. 8 

Lemma 3.12 Let G be a P4-rcducible graph. Then the number of independent sets found 

by the Max-IS algorithm for G, is equal to x(G).  

Proof: We prove it by induction on the size of graph. The base case, where IGI = 1 
is trivial. Now suppose that the statement is MLid for all graphs of size smaller than n, 

and let IGI = n. Let T be the pr-tree of graph G. and consider type of the node r,  the 

root of T: 

a r is a union node: So G is àisconnected. C d  its cornponents GI , G2, . . . , G,. 
Since the size of each Gi is smder  than n, we can apply the induction hypothesis 
to it. So the algonthm partitions each Gi into x(Gi) independent sets. As we 

mentioned in part one of the dgorithm, in this case the number of independent 
sets found for G, is equd to the maximum of number of independent sets of its 

components. Therefore the number of cells in the partition of C is the maximum 
of the chromatic numbers of its components. By lemma 3.10, this is equd to the 
chromatic n u b e r  of G. 

a r is a join node: So G is the join of some smaller subgraphs, Say Gi, G2,. . . , G,. 
The size of each Gi is smaller than n, and again we can apply the induction hypoth- 
esis to them. Therefore the algorithm partitions each Gi into x(Gi) independent 

sets. According to part two of the dgorithm, the number of ceiis in the partition 
of G is the sum of the number of independent sets of aJl of these subgraphs, which 
is equal to Cg, x(Gi). By lemma 3.10, this number is equal to x(G). 

0 r is an add tail node: Let wi  and y be the two children of r, where GT(lVi) is 
the two non-adjacent vertices a and d. We have IGTcw)l = n - 2, and so we can 

use the induction hypothesis. Therefore the number of maximum independent sets 
of Erm), found by the Max-IS dgorithm, is equal to x(GT1,)). Also GT(w) is a 

subgraph of G and therefore x(G) 2 x(GT( y )). The Max-IS dgorithm partitions 
G into the same number of independent sets as it does for GTcs). Therefon, G 
is partitioned into x(GT(-)) independent sets, which is certainly not more than 

x(G)* 

Now we are ready to prove the main theorem of this section. 
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Theorem 5.13 If bl, h, . . . , bk is a Mm-ISP for a P4-reducible p p h  G of sire n, and 

q 5 y 5 . . . < c, a n  the given color cost values, then assigning the color tuith cost q to 

the uertices of class bi, giues an optimum uertez coloring for G. 

Proof: We prove this by induction on n. The base case, where IGI = 1, is trivial. Now 

suppose that the theorem is correct for d graphs of size smaller than n. Let P be an 
optimum vertex coloring of G, and let m, pl,. . . , pz be the sequence of independent sets 
of P. From the observations at the end of section 1.3, this is a maximal independent set 
partitioning. Consider the pr-tree T of gaph  G. Let r be the root of T, which has rn 

children lui, wz, . . . , u>,. We have three cases for the type of r: 

a r is a union node: In this case, G is disconnected and is the union of the s u b  

graphs GT(wi), GT( y), . . . , GT(wm). Let p~ be the subset of the independent set p j ,  

restricted to the subgraph GT(wi). So pil ,  pi*, . . . , p;ti are independent sets of G T ( ~ ~ ) ,  
where ti  is the number of them. In any optimum vertex coloring, the vertices of pj, 

and therefore the vertices of pij ,  ail have color cj. Since the size of each GT(wi) is 

smaller than n, we cm use the induction hypothesis for it. The algorithm fmds a 

Max-ISP for Gqwi) ,  which is bil , bi2, . . . , bki, and assigns color cj to the vertices of 
the class 6,. By lemma 3.12, we have si = X ( G ~ ( ~ , )  ) 5 ti. NOW using the induction 

hypothesis, this is an optimum vertex sum coloring, for the subgaph GT(wi). SO 
for the subgaph GT(wi) we have: 

But we know that: 

Thns we have: 
k k m k rn 

Therefore the cost of the coloring of the Max-IS algorithm is not more than any 
optimum vertex coloring. 
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a r is a join node: So G is the join of the subgraphs GT(wl), GT(*), .. + , GT(w,,,). Each 
pi must be contained completely in one of these subgraphs. Let's c d  the subse- 
quenceofpl,pl, . . . ,p l  that aresubsets of Gqwi) ,~ii ,piz,  - - -  ,piri. Sopiitpil, --. ,piti 

is a Max-ISP of GT(wi). Also c d  the subsequence of cl, q, . . . , c, that is used by 

the coloring P for the vertices of GT(wi), ~ 2 , .  . . ,Q,. Note that p~ (for d i ,  j) is 
equal to p, for some 1 5 x < I, and e, is equal to G. In the Max-IS algorithm, first 

we h d  the Max-ISP of each GqWi 1, which is bil , bi2, . . . , bisi . Now we use the in- 

duction hypothesis for each GT(wi): IGT(uii) 1 < n and the sequence of bil, bil, . . . , bi8, 

gives a Mu-ISP for CT(wi). Also, si 5 ti by lemma 3.12. Thus assigning color c, 
to the vertices of bij, is an optimum vertex c010nng and therefore its cost is not 

more than the cost of the coloring P, which is: 

This assignrnent of colors to the sets bij gives a coloring for G, whose cost is not 
more than the cost of the optimum vertex coloring P. But we have to prove that 

if we sort al1 bijTs by their size and assign color c; to the i'th set, it gives a coloring 

which is not worse than this one. Actually, this is not dificult to show. We prove 
by contradiction. Assume that for some i, j and some i', j', we have: 

It can be seen easily that if we exchange the color of the vertices of sets 6, and 

bitjt, then the resulting coloring is not worse than the former one. Therefore, if we 

assign the s m d e r  color to the larger set of bG9s (in the same way that the Max-IS 
algorithm works) , it gives a coloring which is not worse than the coloring in which 
the vertices of bjj have color Gj. This completes the proof of this case. 

m r is an add tail node: Let wl be the child of r where GT(wr) is just two non- 
adjacent vertices a and d, and wz be the other child. In any optimum vertex s u m  

coloring of G, vertices a and d have a t  least color cl. Thus: 

If G = P4, then triviaily C(G) = 2q + 2 ~ ,  and the coloring that the Max-IS 
algorithm finch has the same cost. Otherwise, there is some vertex, other than b 
and c, in G - {a, d). By the induction hypothesis, the algorithm finds an optimum 



CHAPTER 3. ALGORITHMS FOR VERTEX SUM COLORING 35 

vartex sum coloring for G - {a, d), and we know that none of b and c have color 
cl, and we assign cl to a and d. Thus the cost of the coloring of G by the Max-IS 
algorithm will be: 

C(G - {a, d)) + 2 ~ 1  < C(G). 

Hence the algorithm fin& an optimum vertex coloring of G in this case. 

3.2.3 Analysis of the Algorit hm 

In thia section, we analyze the time complexity of the algorithm. As we mentioned before, 

the pr-tree of a Pd-reducible graph can be constructed in linear time. The main phase of 
the algorithm is to find a Max-ISP of the given graph. Then it just sorts the color costs, 
and assigns them to the independent sets found in the previous phase. Sorting the cost 

values, can be done in O(n logn). So, what lefts is the analysis of the main phase. 

Suppose that G(K E) is a Pd-reducible graph, and T is its corresponding pr-tree. 

Each of the union, join and add tail operations needs at least two subgraphs to operate 
on. In other words, each intemal node of T, has at least two children. Also, we know 
that the number of leaves of T, is equal to [VI. So the height of T is at most in O(n) .  It 
is easy to see that the number of nodes of T is bounded by 2n - 1. 

Consider the node v of tree T, and the step of the algorithm where we want to 

h d  the Max-ISP of GT(V) using the Max-ISP of its children. We claim that computing 

61, b, . . . , bk, the Max-ISP of GT(V), t h  O(IGT(vl 1) time, assuming that the Max-ISP 
of its children are computed. If v is a leaf then it takes constant time to do so. Assume 

that v is an interna1 node, with children wl, wz, . . . , w,. Suppose that we have computed 
the M d S P  of them. Recd  fmm the aigorithm that bil, bi2,. . . , b a i  is the Max-ISP of 
the i'th child of v. According to the algorithm: 

a v is a union node: To compute bj ,  the j'th independent set of GT("), we have 

to take the union over all b, (1 5 i m), which t&es O(lbj[) time. Thus, this 
induction step takes ~ k , ,  lkl 5 O(IÇcvl 1) time. 

a v ici a join node: AU we have to do is to merge the rn presorted lists of Max-ISP 
of the children of v. Clearly the time this taLes is: 
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0 v is an add tail node: In this case, it takes constant time to convert the Max-ISP 
of the subgraphs induced by children of v to a Max-ISP of Gq.). 

So if u is the root of the subtree, in any of the above three cases, it takes O(IGT(,)I) 
time to compute the Max-ISP of GT(,,), using the Max-ISP of children of v.  Since the 

maximum height of T is in O(n), each leaf participates in the calculution, at most O(n) 
times. We have proved the following t heorem: 

Theorem 3.14 For a giuen Pd-nducible p p h  G of sire n, the time complexàty of the 
M e i S  algorithm b 0 ( n 2 ) .  

3.3 Vertex sum coloring of chain bipartite and CO- 

bipartite graphs 

As we mentioned before, vertex sum coloring seems to be harder than standard vertex 

coloring. The NP-completeness of the vertex sum c010hg problem for the class of bi- 

partite graphs is proved by Bar-noy et ai. [3]. So it's natural to consider the complexity 

of this problern for subclasses of bipartite graphs. 

In this section we consider two families of graphs, related to bipartite graphs, and 

give polynomial time solutions for finding an optimum vertex coloring for each family. 

The first family is the family of chah bipartite graphs. The notion of chin graphs was 

introduced by Yannakakis P9,40]. Then we look at the family of cobipartite graphs and 

use the matching technique to fmd their chmmatic surn. 

Definition 3.15 A bipartite p p h  G(X U Y, E )  is called a chuin graph if for euery two 

vertices xi, xj  E X, we have either N ( x i )  C N ( t j )  or N ( z j )  C N ( x i ) .  

In other words, there is an ordering of the vertices of X, x,,, x, . . . , x,, where n is 

the size of X, such that N(x, )  E N(x,+,), 1 5 i < n. We c d  this property, the chain 

propem* 
It's not diffidt to see that if we have an ordering of the vertices of part X having 

the chain property, we can find an ordering of the vertices of Y with this property, as 
weU. This shows that the definition of chain bipartite graphs is unambiguous. Now we 

describe the algorithm for hding the chromatic m m  of a chain bipartite graph. 

Let G(X U Y, E )  be a chah bipartite graph. Without loss of generality, we assume 

that the -ph is connected. Also, let xi,xa, .  . .,z, and yi,yi,. .. ,y, (1x1 = n and 
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IY ( = rn) be the ordering of X and Y respectively, having the chah property. By Ge 
we meaa the induced subgraph of G on vertices {XI, x*, . . . , xi) U {yi, 92, . . . , Yi). 

For a pair ( i ,  j )  where Gij has no edges, consider the following vertex sum coloring 
of G: Assign color 1 to all of the vertices of Gij. If n - i 1 m - j then assign color 2 to 

Ei+l, . . . , xn and assign color 3 to Yj+i,  . . . , ym. Otherwise, if n - i < rn - j then asrign 
color 3 to ti+i,...,~~ and assign color 2 to yj+$,... ,ym. Let Sij be the total sum of 
this coloring. We cal1 a pair ( i ,  j )  a proper pair if the set of vertices of G, is a maximal 
independent set of G. Let Smin be the minimum of Sij for al1 proper pairs (i ,  j). The 
algorithm computes Smin and returns the minimum of {Sm,., 2n, + n,, n, + 272,) as the 
chromatic s u m  of G. The last two values are the total cost of the colorings in which 

the vertices of one part ail have color 1 and the vertices of the other part all have color 

2. We refer to figure 1.1 to see why assigning color 1 to the vertices of one part and 
assigning color 2 to the vertices of the other part does not necessarily give an optimum 
vertex coloring of a chah bipartite graph. 

Theorem 3.16 The chromatic sum of G is equal to the minimum of {Sm;,, 2n,+nv, n,+ 
Znv}. 

Proof: Let C be an optimum vertex coloring of G. We denote the color of vertex u by 

c(u). If no vertex in X has color 1, then dl of the vertices in Y must have color 1 and 

so ad the vertices in X must have color 2. Thus the total cost of C will be 2n, + n,. 
Similady if no vertex in Y ha8 color 1, then al1 of the vertices in X rnust have color 1, 

and all the vertices in Y must have color 2, and the total cost of C will be n, + 2n,. 
Now assume that there is at least one vertex in X and at least one vertex in Y such 

that both of them have color 1. Let i be the largest numbu such that c ( x ~ )  = 1, and let 
j be the largest number such that c(yj) = 1. Since c(xi) = 1 no vertex in N ( t i )  can have 

color 1. Also, we know that C is an optimum vertex coloring, and N ( x k )  Ç N(zi), for 
le < à. Therefore, all the vertices XI, x2,. . . , xi-1 must have color 1, too. Similarly all the 
vertices fi, 92, . . . , yj-1 must have color 1. Thus the vertex set of Gij is an independent 

set. 

It folows fkom the definition of i and j that the color of the vertices zi+l, . . . , x,, 

and ~j+l, .  . . , y,,, mut be greater than 1. So each of them must be connectecl to a vertex 
having color 1, otherwise we could simply change its color to 1, which reduces the total 

eum of colors. In particular, xi+l is connected to ya for some a 5 j, and yj+l is mnnected 
to q for some b 5 i. Because of the diain property it follows that zi is connecteci to 
ail of the vertices vj+is. . . , y%, and yj is connected to dl of the vatices X ~ H ,  . . . , x,,, 
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and the subgraph G - G, is a complete bipartite subgraph. Therefore G, is a maximal 

graph such that its vertex set is an independent set. Thus (i, j) is a proper pair. 

Note that if k > à and I > j, then no two vertices xk and yl, c m  have the same 

color. Now it's clear that the vertices of the larger of the two sets {x i+ l , .  . . , x,) and 

{yj+, , . . . , y,,) must be colored with color 2, and the vertices of the smaller one with 
coIm 3. This kind of coloring is the same as the one we use in the algorithm when we 

select a proper pair. Therefore by considering a l l  proper pairs, we wiil eventually consider 
the proper pair ( i ,  j) and compute the cost of coloring C, which is egual to the chromatic 
sum of G. 

To find a proper pair (à, 1) for a fixed i ,  fint we find the laxgest number j such that 

xiyj  E. If such a number does not exists then it's clear that there is no proper pair 

having i as the first element. 

We now show that ( i ,  j) is a proper pair and that it is the only proper pair having i as 

the first element. This follows from the fact that, if x,yb E E ,  1 < a i and 1 < - b < - j, 
then because of the chain property, tiyb E E. Since b 5 j, this implies that xiyj E E, 
which is a contradiction. 

Therefore, to find a proper pair with (i ,  j) for a fked i, it takes at most O(deg(xi)) 
time SO overall, the time complexity of finding al1 proper pain is O(I El).  We have 
proved the following thwrem: 

Theorem 3.17 We can find the chromatic surn of chain bipartite p p h s  in O(IE1). 

Another family of graphs for which the chromatic sum (and also an optimum vertex 
coloring) can be computed efficiently is the class of cobipartite graphs. A graph G is 

cobipartite if it is isomorphic to the complement of a bipartite graph, i.e its vertex set 

can be partitioned into two disjoint sets, each inducing a complete subgraph. We explain 

how to derive the chromatic sum of such a graph using bipartite matching. 

Assume that we are given a cobipartite graph G(A U B, E) where the subgraphs 

induced on .4 and B, denoted by GA and GB respectively, are both complete. It follows 
that the number of vertices of each color dass in any optimum vertex coloring of G is a t  

m a t  two. Otherwise, there are a t  le& two vertices of the same color in part A or B, 
which is a contradiction, 

So we have some color cIasses of size one, and some color classes of size two such that 

each of them has one vertex x in A and one vertex y in B, such that zy 6 E. It is dear 

'Depending on bon the -ph is given, we may be able to find the pair (i, j) in constant tirne, but 
the total time of reading the graph h m  mput is at hast O(/EI) 
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that to get a minimum total sum, we must have as many classes of size two as possible 

and assign the smdest  colors to them. 

Let Gr(AUB, Et) be the complement of G. So G' is bipartite. Let M = {vlui, ~ 2 ~ 2 , .  . . , 
vkur) be a maximummatching in Gr, where 1 MI = k. It is trivial that wi 6 E, 1 < i 5 k, 
and there are at most k such pairs in E. Therefore to obtain an optimum vertex coloring 

of G, we assign color i to vertices ui and V i ,  1 5 i 5 k, and color arbitmily each of the 
remaining vertices wit h one of the colors k + 1, k + 2, . . . , IV1 - 2k. Computing the max- 

imum bipartite matching can be done in O( 1 E 1 IVIo*5) as follows from Even and TaqWan 

[U]. We summarize the above arguments in the folioiving theorem: 

Theorem 3.18 The vertex sum coloring p~oblem ean be solved on cobipartite p p h s  in 

O(I El 1V1°-5) time. 

Note that Jansen [22] independently has proved this theorem using the same tech- 

nique. 



Chapter 4 

Edge sum coloring 

It is quite natural to try to extend the notion of vertex sum ~010nng to other kinds of 
graph coloring, such as edge coloring. The edge sum coloring problem on graphs asks to 
find a proper edge coloring, such that if Ei is the class of edges having color i ,  then the 

total sum Ci,, - il Ei 1 is minimized. We c d  such a coloring, an optimum edge coloring, 

and c d  the sum of colors the edge chromatic sum. 

As we rnentioned in section 1.4, this problem was Çst introduced in [17] and [2] as 

the vertex sum coloring of the line graph of a given graph. We know from theorem 1.8 
that A < sf(G) 5 A + 1, and that the edge sum coloring is NP-hard for multigaphs. 
These are a h o s t  the only known r d t s  for edge sum coloring. 

In this chapter, we give some more results on this problem. In the first section, we 
prove that h d i n g  the edge chromatic sum and also finding the edge strength of a simple 
graph are both NP-complete. In fact we prove that t hese problems are NP-complete even 

for the class of 3-reguiar graphs. In the second section we present a polynornial time 

dgorithm, which uses weighted matchhg in bipartite graphs, to find the edge chromatic 
sum of trees. The dgorithm can easily be modified to find an optimum edge coloring, as 

well. This dgorithm can also be used for the case that the ttee is a weighted tree, i.e a 

d u e  is given for each edge of the tree, as the weight of that edge. Fiidy, in the third 

section we show how to use Eztended Monadic Second Order Lopic to find a linear t h e  

algorithm for finding the edge duomatic sum of partial k-trees with bounded degne, for 
fked k. 
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4.1 Complexity of the edge chromatic sum and the 
edge strength problems 

In sections 2.1 and 2.3 we saw that the vertex strength problem and the chromatic s u m  

problem for split graphs axe NP-complete. 
In [2] Bar-noy et al. prove that the edge sum coloring problem is NP-complete for 

general multigraphs, but the complexity of this problem was left open for simple graphs. 

In this section, we prove that the edge sum coloring problem is NP-cornpiete for simple 

graphs. In particular, we show that finding the edge chromatic s u m  and finding the edge 

strength of a cubic graph are both NP-complete. A cubic graph is a graph whose vertices 
al1 have degree three. We use the reduction from the chromatic index problem nstacted 

to cubic graphs: 

Instance: A cubic graph G. 

Question: 1s xf(G) = 3? 

Holyer [18] proves that this problem is NP-complete. By Vizing's theorem we know 

that A 5 xt(G) 5 A + 1. So any cubic graph is eedge colorable. Also, by theorem 1.8 
A 5 s'(G) 5 A + 1. So the edge strength of a cubic graph is dso either 3 or 4. We prove 
that deciding whether sf(G) = 3 for a cubic graph is NP-complete. First we show that 

finding the edge chromatic s u m  of a cubic graph is NP-complete: 

Instance: A cubic graph G of size n. 

Question: Is Cf(G) = 3n? 

Note that since the degree of each vertex of a cubic graph is three, in any edge coloring 
of G the total sum of the colors of the edges of a vertex is at least 1 + 2 + 3. Therefore, 

C'(G) 2 3n. 

Theorem 4.1 The edge chromatic sum problern is NP-cornpiete for mbie graphs. 

Proofi First of d, it is trivial that this problem bdongs to NP, shce  we cm e d y  

verify whether a giwn edge coloring is a proper one or not, and if its total sum is equd 
to 3n or not. 

To prove the NP-wmpleteness we use a reduction from the chromatic index problem. 

We pmve that for the cabic p p h  G: 
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First, assume that x'(G) = 3. This means that there exists a 3-edge coloring of G, 
cailed C. Since the degree of each vertex in G is three, al1 numbers 1,2,3 must appear 
on the edges incident with each vertex. So the total sum of the colors in C is equal to 

373. Therefore C(G) = 3n. 
Now, suppose that C(G)  = 3n. It suffices to prove that any optimum edge coloring 

of G is a 3-edge coloring of G. Assume, by way of contradiction, that C is an optimum 

edge coloring of G with 4 colors. So there exists at Ieast one vertex such that color 4 is 
the color of one of its incident edges. Therefore the total sum of the colors of the edges 
incident with that vertex is more than 6. W e  have the lower bound 6 for the sum of the 

colors of the edges of every other vertex. Therefore the total s u m  of colors of the edges 

of the graph wili be strictly greater than 3n, which is a contradiction. Therefore, any 
optimum edge sum coloring of G is also a 3-edge coloring of G, aad so x'(G) = 3. 

a 

Corollary 4.2 For a cubic g ~ a p h  C we have: 

Proof: If sr(G) = 3 then trividy xr(G) = 3. Now assume that .xl(G) = 3. From the 
arguments we had in the proof of theorem 4.1 it follows that if sf(G) > 3 then Ct(G) > 3n. 
Also we know that the sum of any 3-edge c~lonng of G is 372. This proves that in this 
case s' (G) = 3. 8 

Since hding the chromatic index is NP-complete for the class of cubic graphs, there- 
fore: 

Theorem 4.3 Finding the edge strength of cubic g m p h s  is NP-cornpiete. 

4.2 Edge sum coloring of trees 

In this section, we give a polynomial time algorithm that fmds the edge chromatic sum of 

trees. This algorithm uses the dynamic prograrnming method. We can find an optimum 
edge coloring as weil, by storing =me extra information in the data tables. Before that, 

we give an upper bound for the edge strength of bipartite graphs. 

W e  know the upper bound A + l  for the edge strength fiom theorem 1.8. We prove, as 

a lemma, that for bipartite graph the value of the edge strength is equd to the maximum 
degree of the graph, and WU use this fact in our aigorithm. 

Lemma 4.4 If G is a bipartite -ph Gmth maximum degree A, then sr(G) = 4. 
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Proof: Suppose that the lemma is not tme, and let G be a minimal counter example, 
with respect to the number of edges. That is sf(G) 2 A + 1. First of d, we claim that 
there exists an optimum edge coloring of G, in which there is just one edge with color 
8'. To prove th&? let UV be an edge with the color s'. Because G is a minimal counter 
exarnple, if we remove any edge from G, in particular UV, the resulting graph has edge 
strength of at most A. Thus we can consider an optimum edge coloring of G - UV, which 
uses A colors, and assign the color s' to UV. 

Now, consider the edge UV, which has color s'. For each of u and v, there is at l e s t  

one color that does not appear on its adjacent edges. Let i be the color which does not 
appear at u, and j be the color that does not appear at v. We know that i < s' and 
j < s'. Cleady i must appear at v, say on the edge vy, otherwise we can simply change 

the color of UV to à, which removes the color s', and also decrease the s u m  of colors, both 

are contradictions. Similarly j appears at u, say on edge uz. 

Let G, be the subgraph of G, which contains just the edges with color i or j. Consider 
the component of Gij which contains the edge ut. Since the degree of each vertex in Gij 
is at most two, this component is a path that starts fiom ux. But this path does not 
contain the edge vy. Otherwise, this path together with the edge UV makes an odd cycle 
in G, contradicting G being bipartite. Therefore the component of Gij which contains 
ux is diflerent from the one that contains vy. Thus we c m  simply exchange the colors 
i and j in the component containing ux,  and let the color of UV be j .  It can be easily 
seen that this exchange does not increase the total sum of colors, and removes the color 
s' which is a contradiction. 

Assume that we are given tree T of size n, with a Breath First Search ordering, rooted 
at a vertex with the lugest degree. For vertex v of T, we denote the subtree rooted at v 
by TV. By lower edgcs of v ,  we mean the set of edges that connect v to its children. W e  
denote the degree of vertex v by deg(v). Define the best set of k for vertez v ,  to be the 
first deg(v) - 1 natural numbers, excluding the number k. Therefore, the best set of k 

for v is: 
6 1 3 ,  9 de&)) k-l 
{i, 2,. . . , deg(v) - 1) k 2 deg(v) 
{i, 2,. . . , k - 1, k + 1,. . . , deg(v)) 1 < k < deg(v). 

If C is an edge coloring of T, the set of colors used for the lower edges of u, is denoted 
by L,. The foilowing lemma shows the existence of an optimum edge colorhg with a 

specific structure for the lower edges of each vertex. 

Lemma 4.5 Let v be any v e r t e  of T, and k E {1,2,. ..,n). Suppose Mat C is an 
optimum edge coloring of T, such thot the color h appears on the edge joining v to ikr 
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father. Then then  e&ts an optimum edge colonng Cr, in which the colors of the edges 

in E(T) - E(T,) are unchanged, and L, U equal to the best set O j k for uertez v . 

Proof: Assume, by way of contradiction, that there is no such optimum edge coloring. 
Consider an optimum edge colorhg Cf', such that the colors of the edges in T - TV are 
the same as in C, and the h t  i smdest numbers in L,, are the same as in the best 
set of k for vertex v ,  and i is the maximum possible number, between all optimum edge 

colorings of T. 
Let j be the first color that is in the best set of k for v,  and j $ L,. So instead of j, 

a number greater than j belongs to L,, cal1 it 1. Aseume that 1 is the color of the edge 

uul. Since j L,, j must be the color of one of the lower edges of ui, otherwise we can 

simply change the color of vu1 to j and reduce the sum of colors. Therefore j E Lu,. 
Suppose that j is the color of the edge ulul. If 1 L,, then we can exchange the color 

of vu1 and ulul, which doesn't increase the sum of the colors of Ta, but we get an edge 
coloring in which the number of colors that are in both L, and the best set of k for v is 
more than i ,  which is a contradiction. Therefore 1 E Lm. 

Using the same argument, there is a chah of edges, starting from uul,  going down in 
T, such that the colors of the edges in the chah are j and 1, alternatively. This chain 
fuiishes somewhere, because T is finite. The number of edges having color j is not more 

than the number of edges having color 1, because the chah starts with the edge vui, 

which has color 1. Therefore if we exchange the colors j and 1 in this chain, the total 
sum of colors won't increase. But by this exchange, we get another optimum coloring, 
in which the number of cornmon colors between L, and the best set of k for v ,  is more 

than i. This contradiction proves that our assumption is wrong. Therefore the colonng 

C' exists. rn 
Now we explain the algorithm which uses the dynamic p r o g r d n g  method. Let 

the maximum degree of T be A. We have a n x (A + 1) table, called S, such that: 

S[v, j] = The cost of an optimum edge coloring of TV such that j 6 L,. 

For 1 5 j 5 A + 1, the initia d u e s  of S are Wed as: 

S[x,j]=O x i s a l e d  

S[x, j ]  = 00 otherwise. 

The algorithm amputes the d u e s  of this tabIe in a bottom-up way, h m  the leaves 
of the tree up to the mot. It cornputes the value S[w, j] for each i n t d  node v,  &er it 
has computed the values for the children of v. 
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From the definition of best set, it folIows that for ail values of m 2 deg(v), the best 
sets of m for vertex v,  are all equai. So, when we have computed S[v, deg(v)], we can set 

the values of S[v, m] to S[v, deg(v)], for rn > deg(v). 

Suppose that ul , ul, . . . , ur, are the children of interna1 node u. Assume that S[ui, j ]  
is computed, for 1 5 i 5 k and 1 5 j 5 A + 1, and we want to compute the value of 

S[v, ml (1 5 rn 5 A + l), the cost of an optimum edge coloring for TV, such that m 6 Lu. 
Constnid the complete weighted bipartite graph Gu = ( A  U B, Er), as follows: 

A = (ai, az,  * . t ak) and B = {bj l j  Ç the best set of rn for v )  
0 

w(aibj) = S[ui, j] + j 
By  w(aibj) we mean the weight of the edge a;bj. Now find a min-weighted maximum 
matching in G,, and c d  it M. This matching covers al1 the vertices of A. We awign the 

colors of the lower edges of v ,  according to the following d e :  
The color of vui is ci, if the edge aibCi is in M. 

It's trivial that by this assignrnent the d u e  of S[v,m] is equal to the sum of the 
weights of M, which is: 

Knowing how to compute the value of S[v, ml, from the computed values of chilcûen 
of v ,  the algorithm starts fiom the leaves of T, and fdls in the table, from bottom to up, 
until it computes the value of S[r, A + 11, where r is the root of T. This is equal to the 
chromatic s u m  of T. 

Theorem 4.6 The oboue algorithm computes the chromatic sum ofT.  

Proof: The correetness of the algorithm follows easily h m  the following lemma: 

Lernma 4.7 f'J the values of S[ui, j] are computed for 1 5 i 5 k and 1 j 5 A + 1, 
then the a k v e  algorithm computes the value S[v,m] comct ly .  

Proof: Suppose that we want to compute the sum of an optimum edge coloring of 
T, in which m 4 L, for the intemal node v. By lemma 4.5 there exista such an optimum 

edge coloring in which L,, is equd to the best set of rn for W .  Thesefore, to find su& an 

optimum edge coIoring and its CO&, we have to b d  a proper permutation of the values 

of the best set of m for v, and assign the i9th element of it as the color of the ?th lower 

edge of v. 
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Since we aze looking for the cost of an optimum edge coloring, if the color of the edge 

vui is q, then the surn of the colors of the edges in Tu,, is S[ui, ci]. So all we have to do, 
is to find the values q, for 1 _< i 5 C, such that: 

E the best set of rn for v 

~ # c j  f o r i # j  

zti S [ u i , ~ ]  + Ci=, ci is minimized. 

Consider the bipartite graph G, = (AU B, Et) and the min-weighted maximum matching 

of it, M. According to the d e  of the algorithm, we select the optimum eàge coloring of 

Tu,? with the condition that 1 4 Lui, and assign the color 1 to the edge vui. Since M is a 
matching, color 1 is different from the color of any other lower edge of v. Thus, this is a 

proper coloring. 

We set S[v ,  n] to the totd sum of this coloring which is: 

Since M is a min-weighted matching, the above sum is minimized. Equivalently, the 

cost we find is the cost of an optimum edge coloring of TV, given that m 4 L,. This 
proves that we compute S[v,m] correctiy. 

m 
By the previous lemma the algorithm cornputes the value S[r, A + 11, where r is the 

root of T, correctly. Since T is bipartite, by lemma 4.4 it needs A colors for an optimum 

edge coloring of it. So the d u e  of S[r, A + I] is equal to the edge chromatic sum of T. 
m 

To find an optimum edge coloring for T, we only need to keep track of the colors of 

the lower edges of each vertex v, when we compute S[v, ml. This can be easily done by 
storing this extra information for each entry of the table S. 

The most time consuming step of the aigorithm is to find the min-weighted matching. 
If the vertex v has k children, then the size of the bipartite graph G,, is of O(k).  Note 

that we don't make G, for the values of m where m > deg(v). The fastest min-weighted 

maximum matehing algorithm works in time O(I E 1 IV1 log IVI) and is due ta Galil et al. 

[14]. Using this algorithm, for each vertex v ,  and each value m deg(v), we spend 
~ ( d e ~ ( v ) ~  log deg(v)) tirne. Thus the total amount of time for computing the entries of 

the row v of the table S is ~ ( d e ~ ( v ) ~  logdeg(v)). Summing up these values for all u, we 

have the bound 0(n4 log n) for the time complexity of this aigorithm. 'ïhe~ore, we can 
Say: 
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Theorem 4.8 We can fnid an optimum edge sum coloïing of a tree, and thenfore its 

edge chromatic sum in tirne 0(n4 log n) .  

Weighted mees: The above algorithm can also be used for fiading an optimum 
edge coloring of weighted trees. By a weighted tree, we mean a tree T, with a weight 

~ ( e )  for each edge e of T. The cost of an edge coloring f : E + N is defineci as: 

and the goal is to minimize the above sum. We use the same dgorithm as for the regular 
trees. We have the table S, whose S[v, à] entry gives the cost of the optimum edge 

coloring for the subtree T,, with the extra condition that i L,. To compute the value 

of S[v,  il, we construct the bipartite graph G,(A U B, E') in the same way, but the the 
value of the weights of its edges are a bit different. If the color of the edge vui is j, then 
its contribution to the total sum is j x w(vu~), rather than just j. Therefore, the weight 
of the edge aibj in G,, is: 

S[ui, j ]  + j x ~ ( u u i ) .  

Now we follow the same steps. It's not difficult to see that the value of S[root, A + 11 
is the cost of an optimum edge coloring of T. 

4.3 Edge sum coloring of partial k-trees with bounded 
degree 

In a long series of papers, Robertson and Seymour showed many deep results on p p h  
minors. There, they introduced the notion of the tree-width and path-width of a gmph 
[32, 331. This area has been studied extensively by many others. Bodaender [5, 61 has 
good surveys on this topic. 

We saw in section 1.4 that the vertex s u m  coloring problem is polynomidy solvable 

for graphs with bounded treewidth, i.e partial k-trees for fixed k. In this section we 

show how to use Monadic Second Order Logic to solve the edge sum coloring probiem for 

partial k-trees with bounded degree. 

Monadic second order logic (MS) is a powerful language which contains, like first order 

Iogic, propositional logic operators (A, V, -., -, and M), individual mrîabIes (which 
are denoted by s m d  letters z, y,z,. . .), existentid (3) and universal (V) quantifiers, 
and predicates. Moreover, it contains set variables X, Y, 2,. . ., and the membership (E) 
symbol. It d o w s  d e n t i d  and Miversal quantifiers over set variables. 



CHAPTER 4. EDGE SUM COLORING 48 

We can use this language to define problems on finite graphs. Then, solving a problem 

for a given instance is equivalent to deciding whether the formula expressing the problem 

in MS, is satisfiable or not. For example, the property that a subgraph of a graph G, 
induced by set 2, is connected, can be stated sa: 

adjacent (CI, V) 3u3v(v E V A u E U A adj(u, v ) )  

connected(2) = VWV partitim(U, V, Z) =+ adjacent (U, V )  

where adj is the adjacency relation of the vertices of the graph. Although we don% have 

the equaüty operator in the definition of MS, we used it freely, since it c m  be written as 

We Say a graphic problem has the MS property if it can be formulated in the MS 
formulation. Courcelle [9, 101 introduced the use of MS to solve problems restricted to 

partial k-trees. He proved that any problem that c m  be formulated by a MS formula 

has a Iinear time algorithm, when restricted to gaphs with bounded tree-width and if a 

tree decomposition of the graph is given. 

Later, Arnborg et al. [l] extended the definition of MS, to Eztended Monadic Second 

Oder  Logic (EMS). An EMS formula, is a MS formula that also contains some evaluation 

expressions that contain cardinality of set variables, weight of elements of graphs (e.g 

weigbts of edges), arithmetic operators (+,-, x ), and comparative operators. Using this 

extension, we can express, not only the decision problems, but also the optimization 

problems for graphs, such as the maximum independent set problem. An EMS property 

is called a linear ezimmurn EMS pmperty if the eduat ion term is linear in the quantities 

of cardinalities of the sets. For a detailed definition of MS and EMS properties we refer 
to [l] . They showed how to transform a problem on partial k-trees having a MS or EMS 
property to a problem on binary trees. Since we can make the tree decomposition of a 

partial k-tree in iinear time, we can decide MS or EMS properties on such graphs if we 

can decide MS properties on labeled binary trees. 

Theorem 4.9 [l] For the classes of gmphs with bounded tree-uidth all pmblem hauing 

the MS properly or  the Iinear extremum EMS property can be decided in lincar time, if 
the graph is given together with a tree decomposition of it. 

For example, we know that 3-color problem, which asks whether a given graph G is 
kolorable or not, L NP-compIete. This problem can be fordated in MS as follows: 
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So the chromatic number problem which is NP-complete in general, is solvable in linear 
time for part i d  k-t rees, for any fked 1. 

To prove that the edge sum coloring problem is solvable in linear time for any partial 

k-t, with bounded degree and any fixecl k i t  auflices to give a hear extremum EMS 
formula expressing this problem. The property that gaph  G can be edge colored with c 

colors, can be expressed as: 

(el E El A e2 E El -.adj(el, e l ) )  A . . . A (el E Ec A e2 E Ec + -adj(el, e2)) 

By theorem 1.8 we know that if the maximum degree of a graph is A then the number 

of colors used in an optimum edge sum ~010nng of the graph is at most A + 1. So if the 

degrees of the vertices of a class of gaphs is bounded by some constant Cd then any of 

the graphs in that class use at most CA + 1 colors in any optimum edge sum c010nng of 

it. Therefore, we can state the edge sum c010nng problem for the class of graphs with 

maximum degree bounded by CA as finding the minimum of the following evduation 

term under the constrain Edgecoloring(G, Ca + 1): 

By theorem 4.9, the edge sum coloring problem for the class of graphs with maximum 

degree bounded by Ca is directly solvable in linear time for partial Btrees fiom the above 

minimization problem. 



Chapter 5 

Concluding remarks 

5.1 Conclusion 

In this thesis we studied the sum coloring problem. We proved that finding the vertex 
strength of a graph with maximum degree 6 is NP-complete. By theorem 1.2 we knew 
that the vertex strength of a graph, in particular a tree, rnight be fa from its chromatic 
number. Here we showed that for the graphs with small chromatic number (x(G) 5 4) 

the vertex strength is in O(1ogn). To show that the sum coloring problem may be 
much haxder (assuming P # NP) than the standard vertex coloring, we proved the NP- 
completeness of it for split graphs. As a consequence this problem is NP-complete for 
chordal graphs, whereas the standard coloring problem is in P for perfect graphs and 

therefore for chordal graphs. 

By adding more restrictions to split graphs, we got the class of k-split graphs. We 
showed that although the problem is NP-cornplete for split graphs, if we bound the 
degree of the vertices of one part of a split graph, we have a polynomial time aigorîthm 

for this problem. Also, going further up in the hierarchy diagram of graphs, we gave an 

dgorithm for this problem for the dass of Pd-reducible graphs, a superdass of cographs 
and a subclass of permutation graphs. Efficient algorithms for cobipartite and chain 
bipattite graphs were presented at the end of chapter 3. 

For the edge sum coloring problem, we proved the NP-completeness of this problem 

for cubic graphs. A h ,  we pmvided an algorithm, using the dynamic programming 
method and weighted matching in bipartite graphs, to find the edge chromatic sum of 

trees. Finally, the existence of a hear time dgorithm for this problem for partial k-trees 
with bounded degree, for fixed k, was proved using the Monadic Second Order Logic 
tool. 



5.2 Open problems 

One of the most interesting open questions in the area of chromatic sum is conjecture 
1.6 presented by Hajiabolhassan et al. [17] which states that the strength of a graph 

-1 - We believe that this conjecture is true for bipartite graphs. In is at most r 3 

t h 3  case we would have the tight upper bound 1 + rg] for the strength of bipartite 

graphs, and interestingly, trees capture this upper bound. If in fact the conjecture ia 
true for bipartite graphs it would be interesting to see if the proof could be generalized 
to k-colorable gaphs, for k 2 3. 

In the proof of the NP-completeness of the vertex strength problem, we think that 

the bound of 6 for the maximum degree of the graph can be improved to 4. In other 
words, we expect that the vertex strength problem is NP-complete for the graphs with 
A = 4. Also, we don% know the complexity of deciding if the strength of a given graph 
is 2 or not. Since x(G) 5 s(G) we have to consider only bipartite graphs. So for a given 
bipartite graph G, can we check in polynomial time if s(G) = 2? It doesn't seern to be 
solvable in polynomial t h e  since the sum colonng problem is NP-complete for bipartite 
grap hs. 

In section 2.2 we proved that for graphs with x(G)  5 4, s(G) E O(log n). Although 
we couldn't generalize the method we used in section 2.3 to give logarithmic bounds for 
the vertex strength of graphs with bounded higher chromatic number, we expect that 
the same logarithmic bound holds for such graphs. 

It is interesting to consider the time complexity of the sum coloring problem for other 
classes of graphs. Since the OCCP problem is NP-complete for permutation gaphs [22], 
it doesn't seem to be hard to prove the NP-completeness of the sum coloring problem 
for permutation graphs. If this is the case, then some other interesting questions corne 
to mind, such as: what is the time complexity of this problem restricted to the class 
of graphs that are both interval and cointenml? It is known that these graphs are the 
intersection of permutation and split graphs. 

In appendix A we extend the notion of sum coloring to list sum coloring and give an 
algorithm to solve this problem for graphs with bounded tree-width. We give a direct 

application of this problem, so it might be interesting to study this problem on other 

restricted families of graphs. 

We believe that there are classes of graphs for which the edge sum coloring pmblern 

is harder than vertex sum eoloring~ We tried to extend the results of sections 4.2 and 4.3 

to gaphs with bounded treewidth, using the dyn-c programming method based on 
the tree decomposition of the graph. This method f d s  at a stage which needs to  solve 
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a %dimensional matching. It might be the case that this problem i s  NP-complete for 
partial k-trees, which would be a redy interesting result. 
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Appendix A 

List sum coloring of partial k-trees 

Consider the following scheduling problem: we have n machines, cdled Mi,  M2,. . . , Mn, 
and some jobs such that each of them needs some process to be done by each of the 

machines. W e  may assume that the process of a job on any machine takes unit time. 
There are some constraints for each job, which is given as a conflict graph G of size n, in 
which the nodes represent the machines, and two nodes me connected if the job can not 
be executed on the corresponding machines simultaneously. Also we have a list for each 

machine indicating in which intenrals of time we can use that machine for this particular 
job. Our goal is to find a schedule for each job in such a way that the surn of the job 
completion time is minimized. 

It's not dificuit to see that the above problem is equivalent to the following variation 
of the s u m  coloring problem, which is called list surn colonng: A g a p h  G with a list of 

colors for each vertex v E G is given. We want to find a proper colonng of G such that 
the color of each vertex is one of the colors of its Est and the total sum of the colors is 

minirnized. If such a coloring does not exist then the total sum is defined to be infinity. 

In the list sum coloring problem we are Iooking for a Iist coloring in which the total 

surn of the colors is minimized. The list coloring problem is a weIl known problem in 

which we want to h d  a proper coloring of graph G with a given list of colors for each 

vertex, such that the color of each vertex is one of the colors of its list. 

We can easily d u c e  the vertex sum coloring problem to the list sum coloring problem, 

by letting each vertex list be {1,2,. . . , n). So: 

Theorem A.l If the verte2 mm coloring problem is NP-complete for the closs II of 
gnrph, then the liet surn coîoring probîem b also NP-cornpiete for the cIass I I .  

So list sum coloring ie NP-complete for bipartite graphe, chordal graphs. and i n t d  
graphs. Also the Iist coloring problem can be reduced to the Est sum coloring problem. 
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This follows fiom the fact that if we can find an optimum list sum coloring for graph G 
with the total sum less than infinity then there exists a list coloring of G with the given 
list of colors. Thus: 

Theorern A.2 If the lkt coloring problem is NP-complete for the clam II  of graphs, then 
the list surn coloring problem, is also NP-complete for the class II of gnrphs. 

So the list s u .  coloring problem is not easier than either the List coloring or the 

vertex sum coloring problems. But there are some classes of graphs for which the list 

sum coloring problem can be solved efficiently. In t his appendix we present an algont hm 
to solve this problem for the clam of graphs with bounded tree-width, i.e partial k-trees, 

in time O(I"+' IVI), where 1 is the size of the lists of the vertices, and IV1 is the number 
of vert ices, 

Recall the definition of a tree decomposition of a graph from section 1.3. A tree 
decomposition (X, T) of width k is c d e d  mooth if for al1 i E I ,  lXil = k + 1 and for 

ail i j E F, IXi n X, 1 = k. Any tree decomposition of a graph G can be transfomed 

to a smooth tree decomposition of G with the same width, by applying the following 
operations as many times as possible [7]: 

(i)  If for i j  E F, .Xi Xj, then contract the edge i j  in T and take as the new node 
X't = Xj. 

(ii) If for i j  E F, Xi i X j  and lXj 1 c k + 1, then choose a vertex v E Xi - Xj and add 
u to Xj. 

(iii) If for i j  E F, lXil = lXjl = k+ 1 and IXi - Xjl > 1, then subdivide the edge i j  in 

T, let à' be the new node, chmse a vertex v E Xi - Xj and a vertex Y E Xj - Xi, 
and let Xi# = Xi - u U W. 

The contract operation removes two adjacent vertices v and w and replaces them 
with one new vertex that is made adjacent to aU vertices that were adjacent to v and 

W. Bodlaender [7] shows that for a constant k and for the graph G with tree-width at 
moet k, we can find a tree decomposition of G in linear time. Using the foîlowing lemma, 

which is proved by him, it can be seen that we can find a smooth tree decomposition of 

suc .  a graph in linear the:  

Lemma A.$ 17'' If (X, T) *9 a smooth tm decornposition of G(V, E )  with tne-tuidth k, 
then III = IV[ - k. 
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Figure A.1: Transforming a smooth tree decomposition to a smooth binary tree decom- 

position 

We cm transform any smooth tree decomposition to a smooth binary tree decompo- 
sition with the sarne width, such that each vertex i has either no child, or two children 

jl and j2, where Xj, = Xi, using the following transformation: for the vertex i E I with 
m children ji,j2,. . . , j,,, replace the node i with rn + 1 copies of it, cded io, iz, . . . , i,, 
where i, (1 5 x 5 m) has two children, the left one is and the right one is j, [6] (see 

figure A.l). 

One can easily see that this transformation produces a smooth binary tree decompo- 
sition and we can transfocm any smooth tree decomposition to a smooth binaxy one in 

time linear in the size of the tree. 

Let G(V, E) be a gaph  of size n and tree-width of at most k. We denote the list 
assigned to the vertex v by l(v). Suppose that the size of each list is bounded by 1. We 
assume that a smooth binary tree decomposition of G, c d e d  ( X , T ) ,  is given as well. 
For index i E I ,  let G; be the subgraph whose vertex set is the set of al1 vertices in a set 

Xi, with j = i or j is a descendant of à in the rooted tree T. 

We have a 11 1 x lk+' table c&d Opt . Suppose the vertices of Xi are vi, , vi2, . . . , v,,, . 
The value of Opt[i,cl, cz,. . . , c ~ + ~ ] ,  where cj E l(v;,) for 1 5 j k + 1, is the cost of an 

optimum list mm coloring of the graph G;, such that the color of vertex vi, is cj* The 
initial d u e s  of the entries of the table are ail infinity. The table is fUed in a bot tom-up 

mannet, i.e the algorithm starts by computing the d u e s  for the Ieaves of T, and always 
cornputes the value of the table for an interna node when it has computed the values of 

its child or its children. In the following lemma, we show how to compute the dues  of 

this table. 

Lemma A.4 Let i 6e a node of the trcc T and mmme thaf Xi = vil, oc2,. . . , v k ,  . 



(ii) If i is an interna1 node d t h  children j1 and j2, when Xi = X,, and X' = Xi U 

{d )  - {vi,), then: 

when ~f E 1(vf), and i f v p '  E E then c, # W. 

Proofi The proof is aimost straight forward. The only point is the subtraction in case 
(ii), which is the sum of the colon of the vertices of Xi which are computed in both Xi, 
and in Xh, and is redundant. rn 

The number of entries of the table for each node i E I is at most lk+l, and to compute 
the d u e  of each entry we compare at most 1 d u e s ,  one for each color of the list of the 
vertex vf. Therefore the total number of cdculations is in O(lk+' II 1). By lemma A.3 we 
know that 111 E O(IV1). Therefore the complexityof the algorithm is of O(lk+'I~I) .  Note 
that since k is a fixed constant, if the size of each of the lists is bounded, then the time 

complexity of the algorithm will be linear. We can conclude from the above arguments 
that: 

Theorem A.5 The list sum coloring problem is soluable in tirne O(P+' 1 VI) for the class 
of gmphs  with tne-width ut most k ,  where 1 is the mazimum sire of the liskr of the vertices. 

Since d trees, series-pardel graphs, outerplanar grap hs, almost k- t rees, and Helin graphs 

have bounded treewidth, we can Say: 

Corollary A.0 We con solue the list sum coloring problem on trees, series-pamllel 
gmphs, outetplanor graphs, almost k-tnes and Helin graphs in polynomial time. 


