Hardness of Approximation of the Steiner Tree Problem

Henry Fleischmann

University of Michigan

DIMACS, 21 July 2022

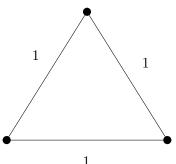
1

Definition (The Steiner Tree Problem)

Given U, a subset of n points from a metric space X, what is the minimum cost of a spanning tree of $U \cup S$ over all $S \subset X$?

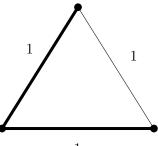
Definition (The Steiner Tree Problem)

Given U, a subset of n points from a metric space X, what is the minimum cost of a spanning tree of $U \cup S$ over all $S \subset X$?



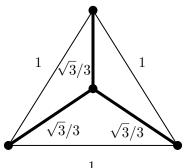
Definition (The Steiner Tree Problem)

Given U, a subset of n points from a metric space X, what is the minimum cost of a spanning tree of $U \cup S$ over all $S \subset X$?



Definition (The Steiner Tree Problem)

Given U, a subset of n points from a metric space X, what is the minimum cost of a spanning tree of $U \cup S$ over all $S \subset X$?



The Hamming Steiner Tree Problem

Definition (Hamming MIN ST)

Given (U, k), with U subset of n points in n-dimensional Hamming space, is there is a Steiner tree of cost at most k?

• Hamming space is $\{0, 1\}^n$ under the Hamming metric, where $||x - y||_0 = \sum_i x_i \oplus y_i$ (edit distance).

The Hamming Steiner Tree Problem

Definition (Hamming MIN ST)

Given (U, k), with U subset of n points in n-dimensional Hamming space, is there is a Steiner tree of cost at most k?

• Hamming space is $\{0, 1\}^n$ under the Hamming metric, where $||x - y||_0 = \sum_i x_i \oplus y_i$ (edit distance).

Theorem (Wareham, 1995) Hamming MIN ST is APX-hard.

The Hamming Steiner Tree Problem

Definition (Hamming MIN ST)

Given (U, k), with U subset of n points in n-dimensional Hamming space, is there is a Steiner tree of cost at most k?

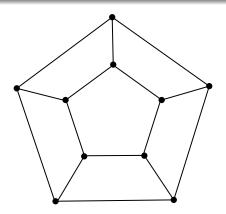
• Hamming space is $\{0, 1\}^n$ under the Hamming metric, where $||x - y||_0 = \sum_i x_i \oplus y_i$ (edit distance).

Theorem (Wareham, 1995) Hamming MIN ST is APX-hard.

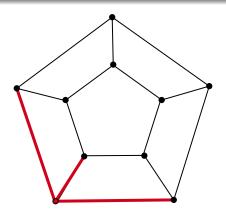
• APX-hard means there is some ρ such that it is NP-hard to approximate solutions within $(1 + \rho)$. But what is ρ ?

Definition (MIN VC)

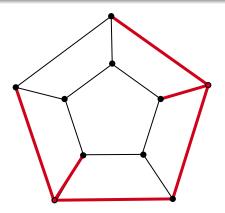
Definition (MIN VC)



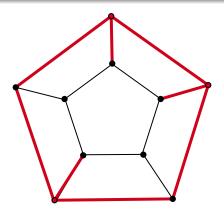
Definition (MIN VC)



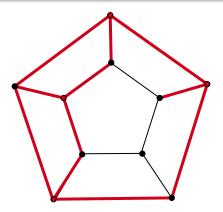
Definition (MIN VC)



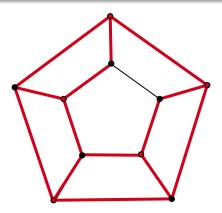
Definition (MIN VC)



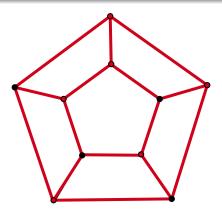
Definition (MIN VC)



Definition (MIN VC)



Definition (MIN VC)



Definition (MIN VC)

Given (G, k) with G a graph, does G have vertex cover of size k? A vertex cover is a subset of vertices containing an endpoint of each edge.

• Why MIN VC?

Definition (MIN VC)

Given (G, k) with G a graph, does G have vertex cover of size k? A vertex cover is a subset of vertices containing an endpoint of each edge.

• Why MIN VC?

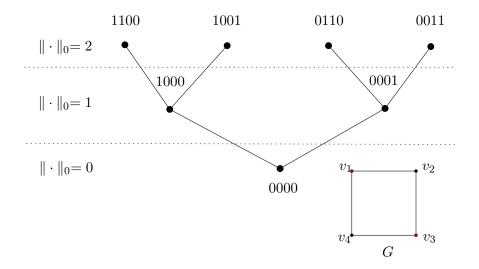
Theorem (Chlebik-Chlebiková 2008) MIN VC is NP-hard to approximate within a factor of 48/47 on 4-regular graphs.

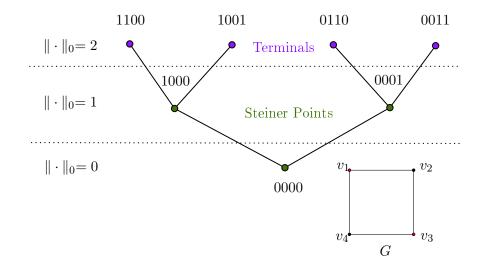
• Let $G = (\{v_1, v_2, \dots, v_n\}, E)$ be a graph of size m.

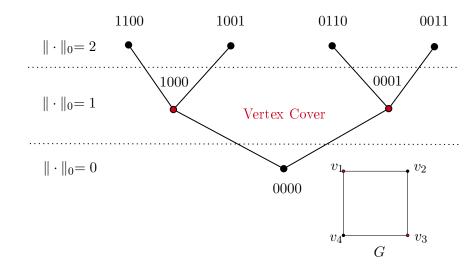
- Let $G = (\{v_1, v_2, \dots, v_n\}, E)$ be a graph of size m.
- Consider $\mathcal{P}(G) = \{e_i + e_j : (v_i, v_j)\}$ as a set of terminals in Hamming space.

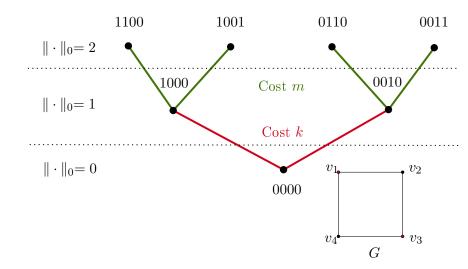
- Let $G = (\{v_1, v_2, \dots, v_n\}, E)$ be a graph of size m.
- Consider $\mathcal{P}(G) = \{e_i + e_j : (v_i, v_j)\}$ as a set of terminals in Hamming space.
- Suppose G has a k-vertex cover.

- Let $G = (\{v_1, v_2, \dots, v_n\}, E)$ be a graph of size m.
- Consider $\mathcal{P}(G) = \{e_i + e_j : (v_i, v_j)\}$ as a set of terminals in Hamming space.
- Suppose G has a k-vertex cover.
- Then, $\mathcal{P}(G)$ has a Steiner tree of cost m + k.









Our Results

Theorem (Embedding Vertex Cover in Hamming Steiner Trees)

For a 4-regular graph G of order n, $\mathcal{P}(G)$ has the following properties.

- If G has a vertex cover of size k, then $\mathcal{P}(G)$ has a Steiner tree T with $\operatorname{cost}(T) \leq 2n + k$.
- 2 If $\mathcal{P}(G)$ has a Steiner tree T with $\operatorname{cost}(T) \leq 2n + k$, then G has a vertex cover of size at most k + 1.

Our Results

Theorem (Embedding Vertex Cover in Hamming Steiner Trees)

For a 4-regular graph G of order n, $\mathcal{P}(G)$ has the following properties.

- If G has a vertex cover of size k, then $\mathcal{P}(G)$ has a Steiner tree T with $\operatorname{cost}(T) \leq 2n + k$.
- 2 If P(G) has a Steiner tree T with cost(T) ≤ 2n + k, then G has a vertex cover of size at most k + 1.

Our Results

Theorem (Embedding Vertex Cover in Hamming Steiner Trees)

For a 4-regular graph G of order n, $\mathcal{P}(G)$ has the following properties.

- If G has a vertex cover of size k, then $\mathcal{P}(G)$ has a Steiner tree T with $\operatorname{cost}(T) \leq 2n + k$.
- 2) If $\mathcal{P}(G)$ has a Steiner tree T with $\operatorname{cost}(T) \leq 2n + k$, then G has a vertex cover of size at most k + 1.

Theorem (Hamming Steiner Tree Hardness)

Hamming MIN ST is NP-hard to approximate within a factor of 1.004.

Acknowledgements

- Thanks to the 2022 DIMACS REU program at Rutgers University for hosting me. Special thanks to Surya Teja Gavva and Karthik C. S. for their mentorship.
- This work is supported by NSF grant CNS-2150186.

References

- S. Arora. "Polynomial time approximation schemes for Euclidean TSP and other geometric problems". In: Proceedings of 37th Conference on Foundations of Computer Science. Burlington, VT, USA: IEEE Comput. Soc. Press, 1996, pp. 2-11. ISBN: 9780818675942. DOI: 10.1109/SFCS.1996.548458. URL: http://ieeexplore.ieee.org/document/548458/.
- [2] Miroslav Chlebík and Janka Chlebíková. "Complexity of approximating bounded variants of optimization problems". en. In: *Theoretical Computer Science* 354.3 (Apr. 2006), pp. 320-338. ISSN: 03043975. DOI: 10.1016/j.tcs.2005.11.029. URL: https:// linkinghub.elsevier.com/retrieve/pii/S0304397505008741.
- [3] H. Todd Wareham. "A Simplified Proof of the NP- and MAX SNP-Hardness of Multiple Sequence Tree Alignment". en. In: Journal of Computational Biology 2.4 (Jan. 1995), pp. 509-514.
 ISSN: 1066-5277, 1557-8666. DOI: 10.1089/cmb.1995.2.509. URL: http://www.liebertpub.com/doi/10.1089/cmb.1995.2.509.