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Introduction

What is the Steiner Tree Problem?

De�nition (The Steiner Tree Problem)

Given U , a subset of n points from a metric space X, what is the
minimum cost of a spanning tree of U ∪ S over all S ⊂ X?

• The points in U are terminals, the points in S are Steiner points,
and the spanning tree is a Steiner tree.
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The Hamming Steiner Tree Problem

The Hamming Steiner Tree Problem

De�nition (Hamming Min ST)

Given (U, k), with U subset of n points in n-dimensional Hamming
space, is there is a Steiner tree of cost at most k?

• Hamming space is {0, 1}n under the Hamming metric, where
∥x− y∥0 =

∑
i xi ⊕ yi (edit distance).

Theorem (Wareham, 1995)

Hamming Min ST is APX-hard.

• APX-hard means there is some ρ such that it is NP-hard to
approximate solutions within (1 + ρ). But what is ρ?
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The Hamming Steiner Tree Problem

A Diversion: Vertex Cover

De�nition (Min VC)

Given (G, k) with G a graph, does G have vertex cover of size k? A
vertex cover is a subset of vertices containing an endpoint of each edge.
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The Hamming Steiner Tree Problem

A Diversion: Vertex Cover

De�nition (Min VC)

Given (G, k) with G a graph, does G have vertex cover of size k? A
vertex cover is a subset of vertices containing an endpoint of each edge.

• Why Min VC?

Theorem (Chleb�ik-Chleb�ikov�a 2008)

Min VC is NP-hard to approximate within a factor of 48/47 on

4-regular graphs.
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The Hamming Steiner Tree Problem

A Reduction From Vertex Cover

• Let G = ({v1, v2, . . . , vn}, E) be a graph of size m.

• Consider P(G) = {ei + ej : (vi, vj)} as a set of terminals in
Hamming space.

• Suppose G has a k-vertex cover.

• Then, P(G) has a Steiner tree of cost m+ k.
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The Hamming Steiner Tree Problem

Finding a Steiner tree of cost m+ k
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Finding a Steiner tree of cost m+ k
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The Hamming Steiner Tree Problem

Finding a Steiner tree of cost m+ k
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Our Contribution

Our Results

Theorem (Embedding Vertex Cover in Hamming Steiner Trees)

For a 4-regular graph G of order n, P(G) has the following properties.

1 If G has a vertex cover of size k, then P(G) has a Steiner tree T
with cost(T ) ≤ 2n+ k.

2 If P(G) has a Steiner tree T with cost(T ) ≤ 2n+ k, then G has a

vertex cover of size at most k + 1.
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Our Results

Theorem (Embedding Vertex Cover in Hamming Steiner Trees)

For a 4-regular graph G of order n, P(G) has the following properties.

1 If G has a vertex cover of size k, then P(G) has a Steiner tree T
with cost(T ) ≤ 2n+ k.

2 If P(G) has a Steiner tree T with cost(T ) ≤ 2n+ k, then G has a

vertex cover of size at most k + 1.

Theorem (Hamming Steiner Tree Hardness)

Hamming Min ST is NP-hard to approximate within a factor of 1.004.

7



Conclusion
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