Steiner Trees for Regular Simplexes

Guillermo A. Gamboa Q., Josef Matejka, Jakub Petr Department of Applied Mathematics Charles University, Prague, Czechia

Mentor: Karthik C.S., Rutgers University

Background

- Steiner tree problem
- Given n points find the tree that connects them while minimizing the length of the tree.
- We may add new points - those are called Steiner points.

Pictures taken from https://hapax.github.io/assets/2020-03-11-steiner/

Background

- Regular simplex
- Generalization of triangle.
- For dimension D we have D + 1 affinely independent points
- Take a convex hull of those points and you get a simplex.
- If all edges has the same length then it is regular.

Table I. Upper Bound on $\rho(D)=L_{S} / L_{M}$ for a Simplex in Dimension D.

Main goal

- Improve on the results by Chung and Gilbert (1976)
- L_{S} - length of the minimal Steiner Tree
- L_{M} - length of the minimal tree
- Numbers in the table are optimal for $\mathrm{D} \leq 5$

\boldsymbol{D}	Bound
1	1.
2	.866026
3	.813053
4	.783748
$\mathbf{5}$.764564
6	.751427
7	.741264
8	.733982
9	.727434
10	.722504
11	.718118
12	.714967
13	.711555
14	.711033
15	.706485
16	.704923
17	.702721
18	.701083
19	.699453
20	.698390
40	.684995
80	.677754
160	.673921

2 Conjectured topology

Methodology: Two main sources

Gilbert, E. N., and Pollak, H. O. "Steiner Minimal Trees." SIAM Journal on Applied Mathematics, vol. 16, no. 1, 1968, pp. 1-29. JSTOR, http://www.jstor.org/stable/2099400.

- Considers Steiner trees for points in the plane.
- Properties of Steiner trees in the plane and generalizations.
- IMPORTANT PROPERTY: In any Euclidean space, at most three lines can meet at angles greater than 120°.

Chung, F. R. K., and Gilbert, E. N. "Steiner trees for the regular simplex." Bull. Inst. Math. Acad. Sinica 4.2 (1976): 313-325.

- Consider Steiner trees for regular simplexes in arbitrary dimensions.
- Present construction of Steiner minimal trees for dimensions 3,4 and 5 .

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823748.

