Steiner Trees for Regular Simplexes

Guillermo A. Gamboa Q., Josef Matejka, Jakub Petr Department of Applied Mathematics Charles University, Prague, Czechia

Mentor: Karthik C.S., Rutgers University

Background

- Steiner tree problem
 - Given n points find the tree that connects them while minimizing the length of the tree.
 - We may add new points those are called Steiner points.

Pictures taken from https://hapax.github.io/assets/2020-03-11-steiner/

Background

- Regular simplex
 - Generalization of triangle.
 - For dimension D we have D + 1 affinely independent points
 - Take a convex hull of those points and you get a simplex.
 - If all edges has the same length then it is regular.

Main goal

- Improve on the results by Chung and Gilbert (1976)
 - \circ L_s length of the minimal Steiner Tree
 - \circ L_M length of the minimal tree
 - Numbers in the table are optimal for $D \le 5$
- Many possible topologies (Gilbert & Pollak, 1968)

TABLE I. Upper Bound on $\rho(D) = L_S/L_M$ for a Simplex in Dimension D.

D		Bound
1		1.
2		.866026
3		.813053
4	8)	.783748
5		.764564
6		.751427
7		.741264
8		.733982
9		.727434
10		.722504
11		.718118
12		.714967
13		.711555
14		.711033
15		.706485
16		.704923
17		.702721
18		.701083
19		.699453
20		.698390
40		.684995
80		.677754
160		.673921
large		C = .669842

2 Conjectured topology

Methodology: Two main sources

Gilbert, E. N., and Pollak, H. O. "Steiner Minimal Trees." SIAM Journal on Applied Mathematics, vol. 16, no. 1, 1968, pp. 1–29. JSTOR, <u>http://www.jstor.org/stable/2099400</u>.

- Considers Steiner trees for points in the plane.
- Properties of Steiner trees in the plane and generalizations.
- IMPORTANT PROPERTY: In any Euclidean space, at most three lines can meet at angles greater than 120°.

Chung, F. R. K., and Gilbert, E. N. "Steiner trees for the regular simplex." Bull. Inst. Math. Acad. Sinica 4.2 (1976): 313-325.

- Consider Steiner trees for regular simplexes in arbitrary dimensions.
- Present construction of Steiner minimal trees for dimensions 3, 4 and 5.

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823748.