Approximability of Euclidean k-center and k-diameter

Todor Antic, Guillermo Gamboa Quintero, Jelena Glisic and Patrik Zavoral

REU24

Motivation

Data clustering: A way of dividing objects (data points) into groups (clusters) such that members of the same group are similar.

We might want to optimize for different parameters, such as:

- Average size of a cluster
- Maximal distance from the center of the cluster (k-center)
- Size of the biggest cluster (Max-k-diameter)

Definitions

- Def. Let (X, dist) be a metric space and $C \subset X$. Then

$$
\operatorname{diam}(C):=\max \{\operatorname{dist}(x, y) \mid x, y \in C\} .
$$

- Def. For a collection of subsets $C_{1}, C_{2}, \ldots, C_{k} \subset X$,

$$
\operatorname{diam}\left(\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}\right):=\max \left\{\operatorname{dist}(x, y) \mid i \in[k] \& x, y \in C_{i}\right\} .
$$

Problem

- Max- k-Diameter - let (X, dist) be a metric space and let k be a constant. Given as input $P \subset X$, find a k-clustering that minimizes $\operatorname{diam}\left(\left\{C_{p}, C_{2}, \ldots, C_{k}\right\}\right)$.
- r-approximate Max-k-Diameter - given (X, dist), k, and input $P \subset X$, let $\Delta:=\min \operatorname{diam}\left(\left\{C_{p}, C_{2}, \ldots, C_{k}\right\}\right)$ over all possible clusterings of P.

Find a k-clustering with diameter at most $r \Delta$.

Problem

State-of-the-art Approximability Results

Metric	NP-Hardness Approximation Factor	Polynomial Time Approximation Factor
$\boldsymbol{\ell}_{\infty}$	$2-\varepsilon[$ Meg90]	2 [Gon85]
ℓ_{0} / ℓ_{1}	$1.5-\varepsilon[$ FKSPZ24]	2 [Gon85]
$\boldsymbol{\ell}_{2}$	$1.304[F K S P Z 24]$	$1.415[\mathrm{BHIO2]}$

Goals of the Project

We want to:

- Study the problem in depth;
- Close the gaps in state-of-the-art.

Barriers to overcome:

- Intermediate distance in $\boldsymbol{\ell}_{1}$;
- Large odd girth in ℓ_{2}

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823748.

References

[BHIO2] Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In Proceedings of the thirty-fourth annual ACM symposium on Theory of computing,pages 250-257, 2002.
[FKSPZ24] Henry Fleischmann, Kyrylo Karlov, Karthik C. S., Ashwin Padaki, and Stepan Zharkov. Inapproximability of Maximum Diameter Clustering for Few Clusters. Arxiv preprint. 2024.
[Gon85] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985.
[Meg90] Nimrod Megiddo. On the complexity of some geometric problems in unbounded dimension. Journal of Symbolic Computation, 10(3-4):327-334, 1990.

