
A Way To Analyze the Number Guessing Game

Gautam Ramasubramanian and Professor Anand Sarwate

Rutgers University, 604 Bartholomew Rd, Piscataway Township, NJ 08854,

ramasubg2@gmail.com,

WWW home page: http://reu.dimacs.rutgers.edu/~gautamr/

Abstract. In this paper, I introduce the number guessing game, as well

as the Bayesian scheme used to analyze the game. The goal is to come

up with a way to find the optimal guess at each stage of the game.

This paper introduces the risk function, and claims that the guess that

minimized the expected risk is the best one to make.
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1 The Number Guessing Game

Two entities are playing a simple game. One player thinks of a number from
1 to n, and the other player tries to guess at the number repeatedly. The first
player tells the second if the guess is too high or too low, until the second player
guesses correctly.

A cost is associated with each verdict of “Too High” or “Too Low”. Let
us call them ↵ and � respectively. The cost accumulates as the first player
keeps guessing. The goal is to come up with the best guessing strategy that can
minimize the cost.

2 Prior Knowledge

It is known that if ↵ = �, then the best strategy is Binary Search of the numbers
between 1 and n, which minimizes the number of guesses the first player has to
make overall. It is also known that if one of the costs, say ↵, is 0, then the
best strategy is linear search. Since ↵ is the cost of getting a “Too High”, we
should start the linear search from n, and keep getting “Too High” verdicts until
reaching the correct number. Likewise, if � is 0, then the best strategy is linear
search starting from 1.

It is helpful to think of these as special cases, when ↵
� = 1 and when ↵

� = 0,1.

3 Bayesian Scheme

Although the correct number, which we will call ✓, is created and known by the
first player, it is not known to the second player, so from the second player’s



perspective, ✓ is a discrete random variable with uniform distribution on the set
1, 2, . . . n. We can say that second player looks at this distribution and produces
a guess ✓g, which is then communicated to the first player. The first player then
formulates a verdict v, which is either “Too High” or “Too Low”, and based
on that the probability distribution for ✓ changes. More specifically, it changes
using the Bayesian scheme, characterized by the following equation, known as
Bayes’ Rule.

P (✓|v) =
P (v|✓)P (✓)

P (v)

In this case, v, the verdict, and ✓g, the guess, are both known. For simplicity’s
sake, let us consider the case when v is “Too High”. P (✓) is given by the uniform
probability distribution from 1 to n as 1

n . P (v|✓) is the probability of a zero
verdict when ✓ is given. This is either 0 or 1, depending on whether ✓ � ✓g or
✓ < ✓g respectively. Finally, P (v) can be represented as

nX

✓0=1

P (v|✓ = ✓0)P (✓ = ✓0) =

✓g�1X

✓0=1

P (✓ = ✓0) =

✓g�1X

✓0=1

1

n
=

✓g � 1

n

Therefore, we can conclude that the posterior probability distribution of ✓
after the second player’s guess is

P (✓|v = Too High) =
1
n

✓g�1
n

=
1

✓g � 1
(1  ✓  ✓g)

Similarly, it can be shown that when the verdict, v is “Too Low”

P (✓|v = Too Low) =
1
n

n�✓g
n

=
1

n� ✓g
(✓g + 1  ✓  n)

4 How To Choose ✓g

We know the initial probability distribution of the discrete random variable ✓. We
know what will happen to the the probability distribution after choosing a guess
✓g. Now, the fundamental question is how to choose ✓g, given the dirstribution
of theta. The choice should take into account two things.

1. The cost of each verdict, ↵ and � (cost)
2. The minimization of the number of remaining choices. This model only looks

at the formation of one guess in one turn, so the fact that the cost accumu-
lates as the game progresses must be taken into account. (minimization of
version space)



To do that, we introduce an idea of risk function. This risk function is actually
a random process, a collection of random variables, functions of ✓, that are
parametrized by ✓g. A better way to think about it is that

risk = f(✓, ✓g)

E[risk ] = g(✓g)

The goal is to define the risk function such that it includes the cost and min-
imization of version space and it agrees with prior knowledge. My hypothesized
risk function is as follows.

risk = f(✓, ✓g) =

8
><

>:

(✓g � 1)↵� ✓ < ✓g
(n� ✓g)�� ✓ > ✓g
0 ✓ = ✓g

� is a positive constant. It measures how important it is to minimize the
hypothesis space vs minimizing the ↵-� cost. If � is greater than 1, then it is
more important to minimize the ↵-� cost. If less than 1, then vice-versa. The
way to choose thetag is to find the number that minimizes the expected risk
E[risk ]. We can take the expectation of the risk, di↵erentiate it with respect to
✓g, find the value of ✓g for which the derivitive is 0. We can take the second
derivative if it is neccessary to prove ✓g is a minimium risk guess rather than a
maximum risk guess.

5 Binary Search Example

Suppose ↵ = � = k > 0. The risk function will now be

risk = f(✓, ✓g) =

8
><

>:

(✓g � 1)k� ✓ < ✓g
(n� ✓g)k� ✓ > ✓g
0 ✓ = ✓g

To calculate expected risk, we use the definition of expected value.

E[risk ] =
nX

✓0=1

f(✓, ✓g)P (✓ = ✓0)

=

✓g�1X

✓0=1
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nX
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n
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If we take the derivative, we get the following equation.

d

d✓g
E[risk ] = 2 ·

(✓g � 1) k�

n
� 2 ·

(n� ✓g) k�

n
= 0

This reduces to the following equation

·
(✓g � 1) k�

n
= 2 ·

(n� ✓g) k�

n
✓g � 1 = n� ✓g

✓g =
n+ 1

2

This indicates if ↵ and � are equal, then the best guess is the median, which
corresponds to binary search.

6 Generalized Formulas

The general equation for the expected risk, derivative and ✓g are

E[risk ] =
(✓g � 1)2 ↵�

n
+

(n� ✓g)2 ��

n

d

d✓g
E[risk ] = 2 ·
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n
� 2 ·
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n
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↵� + ��
=

��

↵� + ��
· n+

↵�

↵� + ��

The optimal ✓g is the weighted average of 1 and n, weighted by ↵� and �� .

Notes and Comments.

The plan is to use empirical data to find out what � is.
If it turns out that � cannot be expressed as a constant, or as a simple

function of n, ↵ and �, then the model is wrong or needs to be modified. In any
case, we are assuming that the risk has a particular form - the one that has been
presented. That may not be the best form, so further work must be done.
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