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1 Context

The context of this problem is 20 Questions, or howver many questions. An
oracle is thinking of a real number θ in the interval [0, 1]. A agent chooses a
guess θi and queries the oracle. The oracle will respond saying that θi is too
high or too low compared to θ. We denote those responses (labels) as −1 and
+1 respectively.
Our model considers the case where there is a cost associated with each query,
and that cost is dependant on the label of the guess queried. We can say, in the
general case, that

Cost(−1) = α, Cost(+1) = β

The cost accumulates as the agent queries more θi’s. The goal of this game is
for the agent to query the oracle with guesses in such a way so that it minimizes
the cost.

2 Relevant Model

To analyze this game, we are using the Bayesian probabilistic update model.
This model considers theta as a random variable, with an initially uniform prob-
ability distribution in the domain [0, 1]. The agent will query the next θi based
on this distribution, and the label for θi will change the probability distribution
of θ according to Bayes’ Rule.
If the first θi is chosen based on the uniform distribution of θ from [0, 1], and
if the verdict is +1, then the distribution will change so that theta will be uni-
formly distributed from [θi, 1]. If the verdict is −1, the distribution will be
from [0, θi]. The range of possible values for θ shrinks at this iteration, and will
continue to do so at every iteration of the game.
This approach has a lot of favorable properties. One benefit of this approach
is that it also works for cases where the labels are noisy, and there is a proba-
bility p that the oracle was wrong in its verdicts. In that case, the probability
distribution will not be uniform for a smaller and smaller range of possible θ’s,
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but will be piecewise constant, with some intervals being more probable than
others, depending on the value of p.

3 Determining best θi

The one thing we did not address in the previous section is, given a general
probability distribution for θ, how can we choose the thetai’s appropriately to
minimize the α, β cost.
Previous work on the subject has been focused on the case where the cost of a
query is not dependant on the label, but is positive. In other words, the case
that has been focused on is when α = β > 0. In that case, it is shown by
Horstein that taking the probabilistic median of the probability function serves
as the optimal guess.
The reason for the optimality is that the median reduces the expected error
between θ and θi.

R(θ, θi) = ‖θ − θi‖
Eθ(R) = g(θi)

θbest = argmin(g(θi))

We will focus on the general case, where α and β may or may not be equal.

4 Heuristic Risk Function to Quartile Search

Firstly, we modified the risk function (R(θ, θi)) shown in previous section to
include α and β terms. The new risk function is shown below.

R(θ, θi) =


α(θi − θ) θ < θi

β(θ − θi) θ > θi

0 θ = θi

Proposition. If θ∗i is equal to argmin(Eθ(R)), then∫ θ∗i

0

f(θ) dθ =
β

α+ β

where f is the probability density function of θ.

Proof. We take the expected value of the risk function with respect to θ.

Eθ(R) =

∫ 1

0

R(θ, θi)f(θ) dθ =

∫ θi

0

α(θi − θ)f(θ) dθ +

∫ 1

θi

β(θ − θi)f(θ) dθ

= −
∫ θi

0

α(θ − θi)f(θ) dθ +

∫ 1

θi

β(θ − θi)f(θ) dθ
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We can express this in terms of anti-derivatives of f . To do that, we will use
integration by parts. Let F be the anti-derivative of f . F will therefore be a
CDF, with F (0) = 0 and F (1) = 1. Let F be the anti-derivative of F . We will
start with the α term first.

−α
∫ θi

0

(θ − θi)f(θ) dθ = −α

[
(θ − θi)F (θ)|θi0 −

∫ θi

0

F (θ) dθ

]

= −α

[
(0)F (θi) + θiF (0)− F(θi) + F(0)

]
= αF(θi)− αF(0)

Now we can re-express the β term.

β

∫ 1

θi

(θ − θi)f(θ) dθ = β

[
(θ − θi)F (θ)|1θi −

∫ 1

θi

F (θ) dθ

]

= β

[
(1− θi)F (1)− (0)F (θi) + F(θi)− F(1)

]
= β − βθi + βF(θi)− βF(1)

We can now add the two expressions to make the expected risk.

Eθ(R(θ, θi)) = g(θi) = αF(θi)− αF(0) + β − βθi + βF(θi)− βF(1)

To determine the argmin, we can take the derivative with respect to and
set that equal to 0.

d

dθi
Eθ(R(θ, θi)) = g′(θi) = αF (θi) + βF (θi)− β

To make sure that finding the critical points corresponds with finding a
minimum, we take the second derivative and see if it is non-negative.

d2

dθ2i
Eθ(R(θ, θi)) = g′′(θi) = αf(θi) + βf(θi) > 0

We assume α and β are non-negative, and f is non-negative because it is a
pdf, so the second derivative is non-negative. We can thus say that the derivative
evaluated at θ∗i , which is argmin(Eθ(R)), is equal to 0.

αF (θ∗i ) + βF (θ∗i )− β = 0

With some rearranging, we have

F (θ∗i ) =

∫ θ∗i

0

f(θ) dθ =
β

α+ β
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