Geometry and Combinatorics of Matroids

Froylan Maldonado
Mentor: Dr. Nicola Tarasca

San Diego City College
DIMACS REU, 2018

Example

Choose an edge such that when you pick any other edge you won't get a cycle. Then choose two edges... then three.. etc.

Example

Choose an edge such that when you pick any other edge you won't get a cycle. Then choose two edges... then three.. etc.

Special edge sets:

Example

Choose an edge such that when you pick any other edge you won't get a cycle. Then choose two edges... then three.. etc.

Special edge sets: (a),(b),(c),(d),(e),(f)

Example

Choose an edge such that when you pick any other edge you won't get a cycle. Then choose two edges... then three.. etc.

Special edge sets: (a),(b),(c),(d),(e),(f),(b,d),(a,c),(e,f)

Example

Choose an edge such that when you pick any other edge you won't get a cycle. Then choose two edges... then three.. etc.

Special edge sets: (a),(b),(c),(d),(e),(f),(b,d),(a,c),(e,f) (a,b,f), (c,f,d), (b,c,e), (a,d,e)

Example

Choose an edge such that when you pick any other edge you won't get a cycle. Then choose two edges... then three.. etc.

Special edge sets: (a),(b),(c),(d),(e),(f),(b,d),(a,c),(e,f)
(a,b,f), (c,f,d), (b,c,e), (a,d,e)
These "special" sets have a name: flats.

Example

Now we let these flats be represented by the variables:
$x_{(a)}, x_{(b)}, \ldots, x_{(a, d, e)}$
These group of variables form a polynomial ring
$S=\mathbb{R}\left[x_{(a)}, x_{(b)}, \ldots, x_{(a, d, e)}\right]$

Example

Now we let these flats be represented by the variables:
$x_{(a)}, x_{(b)}, \ldots, x_{(a, d, e)}$
These group of variables form a polynomial ring
$S=\mathbb{R}\left[x_{(a)}, x_{(b)}, \ldots, x_{(a, d, e)}\right]$
Now we let an ideal

$$
\mathcal{I}=\left(\sum_{i_{1} \in F} x_{F}-\sum_{i_{i} \in F} x_{F}, x_{F_{1}} x_{F_{2}}\right)
$$

The ideal

So what does this even mean?

$$
\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F}
$$

The ideal

So what does this even mean?

$$
\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F}
$$

Choose any two of the following flats: a, b, c, d, e, f and add the flats that contain the two flats you chose.

The ideal

So what does this even mean?

$$
\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F}
$$

Choose any two of the following flats: a, b, c, d, e, f and add the flats that contain the two flats you chose. Ex.
$i_{1}=\mathrm{a}$, then the first sum is:
$x_{(a)}+x_{(a, c)}+x_{(a, b, f)}+x_{(a, d, e)}$

The ideal

So what does this even mean?

$$
\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F}
$$

Choose any two of the following flats: a, b, c, d, e, f and add the flats that contain the two flats you chose. Ex.
$i_{1}=\mathrm{a}$, then the first sum is:
$x_{(a)}+x_{(a, c)}+x_{(a, b, f)}+x_{(a, d, e)}$
$i_{2}=b$, then the second sum is:

The ideal

So what does this even mean?

$$
\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F}
$$

Choose any two of the following flats: a, b, c, d, e, f and add the flats that contain the two flats you chose. Ex.
$i_{1}=\mathrm{a}$, then the first sum is:
$x_{(a)}+x_{(a, c)}+x_{(a, b, f)}+x_{(a, d, e)}$
$i_{2}=b$, then the second sum is:
$x_{(b)}+x_{(b, d)}+x_{(a, b, f)}+x_{(b, c, e)}$

The ideal

So what does this even mean?

$$
\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F}
$$

Choose any two of the following flats: a, b, c, d, e, f and add the flats that contain the two flats you chose. Ex.
$i_{1}=\mathrm{a}$, then the first sum is:
$x_{(a)}+x_{(a, c)}+x_{(a, b, f)}+x_{(a, d, e)}$
$i_{2}=\mathrm{b}$, then the second sum is:
$x_{(b)}+x_{(b, d)}+x_{(a, b, f)}+x_{(b, c, e)}$
The difference of the two:
$x_{(a)}+x_{(a, c)}+x_{(a, d, e)}-x_{(b)}-x_{(b, d)}-x_{(b, c, e)}$

The ideal

Okay, what about $x_{F_{1}} x_{F_{2}}$?

The ideal

Okay, what about $x_{F_{1}} x_{F_{2}}$?
Choose 2 flats from the set of flats and multiply them, but not if one of the flats is contained in the other.

The ideal

Okay, what about $x_{F_{1}} x_{F_{2}}$?
Choose 2 flats from the set of flats and multiply them, but not if one of the flats is contained in the other.
$(a) \subseteq(a, c)$ so we don't include $x_{(a)} x_{(a, c)}$ in the ideal.

The ideal

Okay, what about $x_{F_{1}} x_{F_{2}}$?
Choose 2 flats from the set of flats and multiply them, but not if one of the flats is contained in the other.
$(a) \subseteq(a, c)$ so we don't include $x_{(a)} x_{(a, c)}$ in the ideal.
Ideal ends up with 60 elements.

Example

Now we construct a quotient ring from the polynomial ring and the ideal, and let it be defined by,

$$
A=S / \mathcal{I}\left(\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F}, x_{F_{1}} x_{F_{2}}\right) .
$$

Example

Now we construct a quotient ring from the polynomial ring and the ideal, and let it be defined by,

$$
A=S / \mathcal{I}\left(\sum_{i_{1} \in F} x_{F}-\sum_{i_{2} \in F} x_{F}, x_{F_{1}} x_{F_{2}}\right) .
$$

A has a special name: The Chow Ring.
It's a tool from Algebraic Geometry.

Example

Now we want to get the generators from the Chow ring of the K_{4} graph.

Which are:
1
$x_{(a)}, x_{(b, d)}, x_{(e, f)}, x_{(a, c)}, x_{(a, b, f)}, x_{(c, f, d)}, x_{(b, c, e)}, x_{(a, d, e)}$
$x_{(a, d, e)}^{2}$
Then count how many generators we have from each degree.

Example

Now we want to get the generators from the Chow ring of the K_{4} graph.

Which are:
1
$x_{(a)}, x_{(b, d)}, x_{(e, f)}, x_{(a, c)}, x_{(a, b, f)}, x_{(c, f, d)}, x_{(b, c, e)}, x_{(a, d, e)}$
$x_{(a, d, e)}^{2}$
Then count how many generators we have from each degree.
$1,8,1$

Alright who cares...

So... why do this?

All graphs have a Chow ring, and every Chow ring of a graph ends up having a string of dimensions of various degree pieces that is palindromic.

Alright who cares...

So... why do this?

All graphs have a Chow ring, and every Chow ring of a graph ends up having a string of dimensions of various degree pieces that is palindromic.

In reality, it's not just graphs, but every single matroid.

Quick Examples...

$$
1,8,1
$$

Quick Examples...

What's to come?

- Apply my program to different graphs
- Figure out how the pattern is made
- After that, move on to more abstract matroids and do the same for them

Thank you!

This project wouldn't have been possible without the support from the MAA/NREUP, through NSF grant DMS-1652506.

Citations

June Huh, Combinatorial applications of the Hodge-Riemann relations, Proceedings of the International Congress of Mathematicians 2018, to appear.

Oxley, J. G. Matroid Theory. Oxford University Press, 2011.

