Geometry and Combinatorics of Matroids

Froylan Maldonado
Mentor: Dr. Nicola Tarasca

San Diego City College
DIMACS REU, 2018

What is a Mixed Discriminant?

To define the mixed discriminant, let $\vec{A}=\left(A_{1}, \ldots, A_{d}\right)$ be a collection of $d \times d$ matrices, and consider the function

$$
\operatorname{det}_{\vec{A}}: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad\left(t_{1}, \ldots, t_{d}\right) \longmapsto \operatorname{det}\left(t_{1} A_{1}+\ldots .+t_{d} A_{d}\right)
$$

which is a homogeneous polynomial of degree d. The number

$$
D\left(A_{1}, \ldots, A_{d}\right)=\frac{\partial^{d}}{\partial t_{1} \ldots \partial t_{d}} \operatorname{det}_{\vec{A}}\left(t_{1}, \ldots . t_{d}\right)
$$

is called the mixed discriminant of \vec{A}. The mixed discriminant is symmetric in \vec{A}, and it is nonnegative whenever all the matrices in \vec{A} are positive semidefinite.

Example

Let $A_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad A_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad A_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\operatorname{det}\left(x A_{1}+y A_{2}+z A_{3}\right)=\left|\begin{array}{ccc}x+y+z & 0 & 0 \\ 0 & x+y+z & 0 \\ 0 & 0 & x+y+z\end{array}\right|$
$D\left(A_{1}, A_{2}, A_{3}\right)=\frac{\partial^{3}}{\partial x \partial y \partial z}(x+y+z)^{3}=\mathbf{6}$

HR(P)

Let $\vec{P}=\left(P_{1}, \ldots, P_{d-2}\right)$ be a collection of $d x d$ positive semidefinite matrices.

$$
H R(\vec{P}): \text { Sym }_{d} \times \text { Sym }_{d} \rightarrow \mathbb{R}, \quad\left(\eta_{1}, \eta_{2}\right) \mapsto D\left(\eta_{1}, \eta_{2}, P_{1}, \ldots ., P_{d-2}\right)
$$

HR(P)

$\operatorname{HR}(\vec{P})$ can be represented by a matrix T.

$$
T=\left[D\left(\eta_{i}, \eta_{j}, P_{1}, \ldots . P_{d-2}\right)\right]
$$

HR(P)

$\operatorname{HR}(\vec{P})$ can be represented by a matrix T.

$$
T=\left[D\left(\eta_{i}, \eta_{j}, P_{1}, \ldots . P_{d-2}\right)\right]
$$

Theorem 1

Any matrix representing $\mathrm{HR}(\vec{P})$ has exactly one positive eigenvalue.

Goals

Long term: To show how the general theorem of matroids can be applied in various different cases, and to have a few examples to show Rota's unimodality conjecture: If $w_{k}(M)$ is the number of rank k flats of a rank d matroid M , then the sequence $w_{\mathrm{o}}(M), \ldots, w_{d}(M)$ is unimodal. Welsh conjectured more generally that the sequence is log-concave.

Right now: Prove that the determinant of a matrix representing one case of $\operatorname{HR}(\vec{P})$ is nonpositive.

ACKNOWLEDGEMENTS

This project would not be possible without the support from the MAA/NREUP, through NSF grant DMS-1652506.

Citations

June Huh, Combinatorial applications of the Hodge-Riemann relations, Proceedings of the International Congress of Mathematicians 2018, to appear.

