Competition Graphs and Permutation Patterns

Elizabeth Yang

DIMACS REU 2014
Mentor: Dr. Brian Nakamura
eyang@reu.dimacs.rutgers.edu

July 18, 2014
Overview

1 Background and Recap
 • Competition Graphs
 • Doubly Partial Orders and Permutations
 • The Competition Graph of a Permutation
 • Notation

2 Observations and Results
 • Forbidden Induced Subgraphs
 • Bijections
 • Counting
 • Recurrence

3 References
Competition Graphs

- Given digraph D, its **competition graph** $C(D)$ has:
 - The same vertex set $V(D)$
 - Edge between u and v if D contains arcs (u, w) and (v, w)
The **doubly partial order** on \mathbb{R}^2:

- $S = \{(x_1, y_1), (x_2, y_2), \ldots, (x_k, y_k)\}$
- $(x_i, y_i) \prec (x_j, y_j)$ if $x_i < x_j$ and $y_i < y_j$

A **permutation** is a sequence $\pi = \pi_1\pi_2\ldots\pi_n$, where each π_i is distinct and $\in \{1, 2, \ldots, n\}$

- S_n is the set of all permutations of length n
- A pattern $\tau \in S_k$, $k < n$, is the perm. on a subsequence of $\pi \in S_n$
- Ex: $\pi = 5634127$ contains the pattern 123 but avoids 132
- $S_n(\tau)$ is the set of $\pi \in S_n$ that avoid τ
The Competition Graph of a Permutation

- Given \(\pi \in S_n \), \(D(\pi) \) is the digraph given by the doubly partial order.
- \(C(D(\pi)) \) is its competition graph.
 - For simplicity, use \(C(\pi) \) instead of \(C(D(\pi)) \)
- From left to right: \(\pi = 31452 \), \(D(\pi) \), and \(C(\pi) \)

Edges in \(C(\pi) \) correspond to 123, 132 patterns!
Some More Notation

- Graph $G \in C(S_n)$, if there exists $\pi \in S_n$ such that $C(\pi)$, with the isolated vertices removed, is isomorphic to G
 - Analogously define $C(S_n(123))$ and $C(S_n(132))$
- If $\pi \in S_n$ is in the set $C_n^{-1}(G)$, $C(\pi)$, with the isolated vertices removed, is isomorphic to G
 - For instance, $31452 \in C_5^{-1}(K_3)$

Analogously define $C_n^{-1}(G, \tau)$, which restricts permutations to $S_n(\tau)$

Let $c_n(G) = |C_n^{-1}(G)|$ and $c_n(G, \tau) = |C_n^{-1}(G, \tau)|$
Forbidden Induced Subgraphs

- Take any $G \in C(S_n)$:
 - If G contains P_3 as an induced subgraph, $G \notin C(S_{132})$
 - If G contains $K_{1,3}$ as an induced subgraph, $G \notin C(S_{123})$

- In other words (or notation):
 - $C^{-1}(P_3, 132) = \emptyset$ (No permutations in $S_n(132)$ can form P_3)
 - $C^{-1}(K_{1,3}, 123) = \emptyset$ (No permutations in $S_n(123)$ can form $K_{1,3}$)

Conjecture: Given that $G \in C(S_n)$:
- $G \notin C(S_{132})$ iff P_3 is an induced subgraph
- $G \notin C(S_{123})$ iff $K_{1,3}$ is an induced subgraph
Bijections

- From the previous slide:
 - \(C^{-1}(P_3, 132) = \emptyset \)
 - \(C^{-1}(K_{1,3}, 123) = \emptyset \)

- Can we do better?
 - \(C^{-1}(P_m, 132) = \emptyset \)
 - \(C^{-1}(K_{1,3}, 123) = \emptyset \)

- We can do even better!

 \[
 C^{-1}(P_3, 123) \iff C^{-1}(K_{1,3}, 132) \\
 C^{-1}(P_m, 123) \iff C^{-1}(K_{1,m}, 132) \\
 C^{-1}(P_3) \iff C^{-1}(K_{1,3}) \\
 C^{-1}(P_m) \iff C^{-1}(K_{1,m})
 \]

Elizabeth Yang (DIMACS REU 2014)
Competition Graphs and Permutations
July 18, 2014 8 / 11
Counting

- Formula for $c_n(K_{1,3}, 132), c_n(K_{1,3})$ using induction

 $$c_n(K_{1,3}, 132) = \sum_{k=1}^{n-6} [(k - 1) \cdot 2^k + 1]$$

 $$c_n(K_{1,3}) = 4 \cdot \sum_{k=1}^{n-6} [(k - 1) \cdot 2^k + 1]$$

- Problem: Induction doesn’t generalize to $c_n(K_{1,m}, 132), c_n(K_{1,m})$

- A different way to compute $c_n(K_{1,m}, 132), c_n(K_{1,m})$
 - Insertion approach
 - Does not rely on induction
 - Problem: Insertion is conceptually easy but difficult in practice
Solution: a recurrence relation:

\[c_n(K_{1,m}, 132) = c_{n-1}(K_{1,m}, 132) + c_{n-2}(K_{1,m-1}, 132) \]

<table>
<thead>
<tr>
<th>(m, n)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>32</td>
<td>80</td>
<td>192</td>
<td>448</td>
<td>1024</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>17</td>
<td>49</td>
<td>129</td>
<td>321</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>23</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

Proof involves crafting a simple, but nontrivial bijection

Allows us to compute \(c_n(K_{1,m}, 132)\) for any \(m, n\) quickly

- We only need the \(n = 3, 4\) and \(m = 1\) to complete the table
References

Acknowledgments

I would like to thank my mentor, Dr. Nakamura, for guiding me through the research process and for always being available to help. I would also like to thank Dr. Fiorini, Rachel, and Richard for organizing the REU, DIMACS for supporting this research, and the rest of the REU participants for making my first research experience a good one!