Solving for the Nth Roots of Unity (Numerically)

Eric Lee
July 8, 2014

1 Conversion into a System of Polynomials

The Nth Roots of Unity come from the roots of the complex-valued polynomial

\[p(z) = z^n - 1 \]

Conversion of this complex-valued, analytic function into a system of two real-valued polynomials follows by setting \(z \) equal to \(x + iy \) and separating into real and imaginary parts. For example, in the case of \(n = 2 \), we get

\[z^2 - 1 = (x^2 - y^2 - 1) + (2ixy) \]

which corresponds to the system of polynomial equations

\[p(x, y) = \begin{cases}
 x^2 - y^2 - 1 \\
 2xy
\end{cases} \]

Note that because \(z^2 - 1 \) has two roots at \(\pm 1 \), we would expect our system to have roots at \((\pm 1, 0) \). However, if we view our system as complex-valued instead of real-valued, we actually get four roots \((\pm 1, 0) \) and \((0, \pm i) \). One direct explanation is Bezout’s Theorem. Another explanation is that by setting \(z = (x + iy) \), can set \(x=0 \) and fix \(y \) accordingly, and vice versa.

In general, conversion of \(z^n - 1 \) leads to the following formula:

\[
 f(n) = \begin{cases}
 \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} x^k y^{n-k} & n - k \text{ even} \\
 \sum_{k=0}^{n} (-1)^{n-k+1} \binom{n}{k} x^k y^{n-k} & n - k \text{ odd}
\end{cases}
\]
This system has n real roots and $2n - 2$ complex roots. This is because we may assume that either x and y are both real, or that x is 0 and y is imaginary, or that y is 0 and x is imaginary, leading to n real roots and $2n$ complex roots. However, since 1 is always a root of unity, we’ve double counted it twice (since 1 is both a real root and an imaginary root) and so we subtract 2 from the total number of complex roots.