Characterizing the Quality of 3D Printed Parts using Deep Learning

Erika Melder

Mentor: Weihong (Grace) Guo

Statement of the Problem

- During the additive manufacturing process, there is a risk of defects arising in printed parts
 - ♦ Porosity the presence of void space inside the part body; weakens the part
- ♦ We would like to **detect** defects such as these before printing is finished, so we can dynamically correct them

The Data

- ♦ An Optomex LENS 750 system was equipped with a pyrometer aimed at the melt pool, and an infrared camera in the print chamber
- ♦ The system printed a thin wall out of Ti-6Al-4V
- ♦ The pyrometer and IR camera feeds were captured as pixel value matrices at each time step

Examples

My Approach

- Use a neural network: layered graph representing a series of operations converting input data (pixels) to output data (class)
 - ♦ Neural networks need to **learn**: given labeled training data, compute error at each step and auto-update weights and edges

My Approach

- Combine two types of neural network:
 - ♦ Convolutional: Consolidates spatial data into "features"
 - ♦ **Recurrent**: Input is given in an ordered sequence
- ♦ Because there are two distinct types of data, make two neural nets – PyroNet and IRNet – and compare their outputs

PyroNet - Overview

- ♦ Input: Critical region of a pyrometer capture (a 69x120 .csv file)
- PyroNet is **not recurrent** because there is minimal time dependency between successive pyrometer images
- ♦ Testing accuracy is **very high** reliably 94%

PyroNet - Data Preprocessing

- ♦ Read .csv files into matrices, pair them with class
- ♦ Dataset: 1,492 successes, 71 failures...?
 - ♦ Success/Failure Ratio: 21:1
- ♦ Because the dataset does not have a lot of failures, the neural net cannot train effectively
- ♦ We also cannot get new data...
 - ♦ ...because the system is in **Mississippi**.

PyroNet - Data Preprocessing

- ♦ Solution: create artificial failures using a process called data augmentation
 - ♦ Take the existing images of failures and **slightly transform them** now we have more failures!
- ♦ Dataset: 1,492 successes, 71 failures, **700 augmented failures**
 - ♦ Ratio: 2:1

Terminology

- ♦ Conv2D: Layer that applies a 2D convolution to the image
- ♦ **MaxPool2D**: Layer that reduces the size of its input by representing a whole area by the maximum value in that area

Terminology

- ♦ ReLU: Rectified Linear Unit maps any negative values to 0, making the entire network nonlinear
- ♦ **CMR cell**: Conv2D → MaxPool2D → ReLU, in order

PyroNet - Structure

Input (.csv file)

CMR cell → Flatten → Dense Dense

Output

(class)

PyroNet - Metrics

Confusion Matrix (453 samples)		
	Actual Non-Pore	Actual Pore
Predicted Non-Pore	297	2
Predicted Pore	23	131

IRNet - Overview

- ♦ Input: 3 subsequent frames of critical region of an IR capture (a 30x120 .csv file)
- ♦ IRNet **is recurrent** because there is spatial information that is changing with time
- ♦ Testing accuracy is roughly 90% looking to optimize further

IRNet - Data Preprocessing

- ♦ Read .csv files into sequences of matrices, pair them with class
- ♦ Dataset: 5,392 successes, 285 failures, **3,300 augmented failures**
 - ♦ Success/Failure Ratio: **3:2**

Terminology

- ♦ LSTM: Long Short-Term Memory

 layer that maintains information
 across a sequence of inputs for use
 in calculation
- ♦ R-CMR cell: A CMR cell that processes a sequence of inputs to produce a sequence of outputs

IRNet - Structure

Input (3 .csv files)

R-CMR cell

R-CMR cell

→ R-Flatten

LSTM

Dense

Output (class)

IRNet - Metrics

Confusion Matrix (1911 samples)		
	Actual Non-Pore	Actual Pore
Predicted Non-Pore	1021	57
Predicted Pore	129	704

Potential

- ♦ The neural nets have the ability to quickly recognize patterns that could form pores
 - ♦ Pursue increased accuracy
 - ♦ Test neural net on **other structures** besides the thin wall
 - ♦ Expand neural net to **predict more types of defects**

Acknowledgements

- ♦ The DIMACS REU program at Rutgers University, supported by NSF grant CCF-1852215
- Dr. Weihong (Grace) Guo
- ♦ The awesome DIMACS staff
- ♦ And all my friends!