Designing New Machine Learning Techniques
Presentation 1

Elijahu Ben-Michael Mentor: Dr. Kevin Chen

June 6, 2014
Outline of Talk

I Hidden Markov Models and Chromatin Marks
II Tensors and the Tensor Decomposition Problem
Hidden Markov Models

- Set of observations and hidden states
- Transition from hidden state to hidden state is a **Markov Process**

Markov Condition: Given a set of random variables \(\{H_t|t \in \mathbb{N}\} \),

\[
P(H_{t+1} = h_{t+1}|H_t = h_t, \ldots, H_0 = h_0) = P(H_{t+1} = h_{t+1}|H_t = h_t)
\]
Chromatin

- Chromatin inside of nucleus hold genetic information
- Hundreds of slight modifications ("marks")

Question

Do chromatin marks correlate with functional elements in genome? If so, how?
Chromatin
Hidden Markov Models and Chromatin Marks

- Can use Hidden Markov Models to find the number of chromatin states and see what they do
- Observations: Chromatin Marks
- Hidden States: Chromatin States (associated with functional elements)

We can find the parameters of the Hidden Markov Model using a new technique
Outline of Talk

I Latent Variable Models and Chromatin Marks
II Tensors and the Tensor Decomposition Problem
Tensor

A Real pth-order Tensor $T ∈ \otimes^p \mathbb{R}^n$ is a p-way array where $T_{i_1, i_2, ..., i_p}$ is the element at position $i_1, i_2, ..., i_p$

Tensor product and Tensor power

For any vectors $\vec{v}, \vec{w} ∈ \mathbb{R}^n$, $\vec{v} \otimes \vec{w}$ denotes the Tensor Product of \vec{v} and \vec{w}, and $\vec{v} \otimes^p = \vec{v} \otimes \vec{v} \otimes \vec{v} \otimes ... \otimes \vec{v} ∈ \otimes^p \mathbb{R}^n$ denotes the p-th Tensor Power

Example tensor product

$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, $\vec{v} \otimes \vec{w} = \begin{pmatrix} v_1 w_1 & v_1 w_2 \\ v_2 w_1 & v_2 w_2 \end{pmatrix}$
The problem

Given a 3rd order tensor $T \in \otimes^3 \mathbb{R}^n$ that is of the form

$T = \sum_{j=1}^{n} \lambda_j \vec{v}_j \otimes^3$ where $\{\vec{v}\}$ is an orthonormal basis of \mathbb{R}^n and $\lambda_i > 0 \forall i$. Can we (approximately) find all of the \vec{v}_i, λ_i pairs?

Questions

1. Are the \vec{v}_i, λ_i pairs uniquely determined?
2. Are there any efficient algorithms to find them?
Matrix Analogy: EigenDecomposition

The problem

Given a matrix M of the form $M = \lambda_j \vec{v} \vec{v}^T$ where $\{\vec{v}\}$ is an orthonormal basis of \mathbb{R}^n and $\lambda_i > 0 \forall i$. Can we (approximately) find all of the \vec{v}_i, λ_i pairs?

Questions

1. Are the \vec{v}_i, λ_i pairs unique? **YES**, if the eigenvalues are distinct
2. Are there any efficient algorithms to find them? **YES**
Identifiability
Uniqueness of \vec{v}_i, λ_i pairs

Proposition

The set $\{\vec{v}_i | \forall i\}$ is the set of isolated local maximizers of

$$f_t(\vec{x}) = \sum_{i,j,k} T_{i,j,k} x_i x_j x_k$$

This tells us that we can identify the \vec{v}_i, λ_i pairs
Tensor Power Method

A useful quadratic operator

For any real 3rd order Tensor T an $\vec{x} \in \mathbb{R}^n$, define

$$\phi_T(\vec{x}) = \sum_{i,j,k} T_{i,j,k} x_j x_k \vec{e}_i,$$

where \vec{e}_i is the ith basis vector.

For the required $T = \sum_{j=1}^n \lambda_j \vec{v}_j \otimes^3$, $\phi_T(\vec{x}) = \sum_{i=1}^n \lambda_i (\vec{v}_i^T \vec{x})^2 \vec{v}_i$.

Note: $\phi_T(\vec{v}_i) = \lambda_i \vec{v}_i$.
Tensor Power Method

Power Iteration

Start with some $\vec{x}^{(0)}$ and for $k = 1, 2, 3, \ldots$
$$\vec{x}^{(j)} = \phi_T(\vec{x}^{(j-1)})$$

Proposition

For almost all initial $\vec{x}^{(0)}$, the sequence
$$\frac{\vec{x}^{(j)}}{||\vec{x}^{(j)}||}$$
converges quadratically fast to a \vec{v}_i

Algorithm

- Pick an initial $\vec{x}^{(0)}$
- Run Power Iteration and return the approximations $(\hat{\vec{v}}_i, \hat{\lambda}_i)$
- Replace T with $T - \hat{\lambda}_i \hat{\vec{v}}_i \otimes^3$ and repeat
Many Latent Variable Models have tensor interpretations that are of the form $T = \sum_{j=1}^{n} \lambda_j \vec{v}_j \otimes^3$ in which the parameters can be found from the eigenvectors and eigenvalues.

- Exchangeable Topic Models
- Mixture of Gaussians
- Independent Component Analysis
- Latent Dirichlet Allocation
- Multi-view Models
- Hidden Markov Models
Anandkumar, A., Ge, R. Hsu, D., Kakade, S. and Telgarsky, M.
Tensor Decompositions for Learning Latent Variable Models