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Laser Metal Deposition (LMD)

feeding

Additive manufacturing (AM) technique in bonding
which a laser beam is used to fuse metal o
powder by melting it as it is deposited, layer e
by layer “one ,
Used to build commercial aircraft, other Laser Shaft i
vehicles, and medical implants gy | / R Howd
Benefits: - IR Camera
o High build-up rate and density — v .
o Very customizable ;‘jﬁ‘;t',j;
o Reduces waste Ra¥
o  Works for large components
o Suitable for manufacturing and repair




Porosity

Occurs when tiny cavities form in the metal
as it is printed
Can never be completely eliminated
Considered to be one of the most
destructive defects in metal AM
o Reduces static mechanical properties
o Causes significant scatter of fatigue
Our goal: predict whether parts printed via
LMD will have a good (<0.05mm diameter)
or bad level of porosity, and how large the
pores will be if classified as bad
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Fig. 1. In-process sensing in LMD [7] and examples of pyrometer data.
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Physics-Driven Approach

Analytical and numerical models
based on process mechanics

Data Science Approach

Supervised learning methods that take in
high-speed thermal images melt pools
and put out a binary indicator of porosity

prediction

% Useful for understanding the Can predict porosity during LMD
o nature of pore formation and its Can handle complex data (high
"é characteristics dimensionality, heterogeneity,
3 large volume)

< Efficient and accurate

“ Can have incomplete or missing Black-box methods don’t

o physics incorporate physics knowledge
& Requires calibration of model Must be carefully trained with

& parameters available experimental data
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§e Computationally expensive Difficult to interpret, apply, or
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.g Lacks the ability of real-time generalize for a wider set of

process conditions




Physics-Driven Deep Learning Model
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VGG16 Deep Learning Model

VGG16 is a convolutional neural
network (CNN), a type of neural
network typically used to analyze
images

Proposed by K. Simonyan and A.
Zisserman (University of Oxford) in
2014

92.7% accurate when completing a
top-b test in ImageNet, a dataset
of over 14 million images that can
be sorted into 1000 classes
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Next Step: VGG16 + Finite Element
Simulation + Empirical Physical Data

This summer | will build the next
iteration of this model that
o Incorporates empirical data
o Incorporates more simulated
variables
o  Will potentially incorporate the
physical data earlier in the model
| intend to accomplish this using
transfer learning on the pre-trained
VGG16 from the Keras (Python deep
learning API) library

Table 1: Full set of features extracted and transformed.

Feature type

Description and Notation in Figure 5

Total number

Pyrometer Smoothed radians from cubic spline interpolation 63
Pyrometer Principal Components from FPCA 63
Pyrometer Principal Components from PCA 63
Pyrometer Maximum Temperature 1
FEA; geometric Dimensions: length (a), width (b), height (c) 3
FEA; geometric Rectangular prism volume = length x width x height (d) 1
FEA; geometric Hemisphere volume = 2/3 x 7 x 73 where 7 is average 1
of length and width (e)

FEA; thermal cooling Maximum Temperature 1
FEA; thermal cooling Area under curve of plot of line through center of 3
bounds for z, y, and z directions (hl, h2, h3)

FEA; thermal cooling Slope of line formed by peak of graph and bottom 3

leftmost point for z, y, and z directions (f1, f2, f3)
FEA; thermal cooling Slope of line formed by peak of graph and bottom 2

rightmost point for z and y directions (g1, g2)

Hybrid
Hybrid

Residual by Eq. (4)
Layer number
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