Deep Learning for Quality Prediction in Metal Additive Manufacturing

Presented by Erin McGowan Mentor: Dr. Weihong (Grace) Guo

Laser Metal Deposition (LMD)

- Additive manufacturing (AM) technique in which a laser beam is used to fuse metal powder by melting it as it is deposited, layer by layer
- Used to build commercial aircraft, other vehicles, and medical implants
- Benefits:
 - High build-up rate and density
 - Very customizable
 - Reduces waste
 - Works for large components
 - Suitable for manufacturing and repair

Porosity

- Occurs when tiny cavities form in the metal as it is printed
- Can never be completely eliminated
- Considered to be one of the most destructive defects in metal AM
 - Reduces static mechanical properties
 - Causes significant scatter of fatigue
- **Our goal:** predict whether parts printed via LMD will have a good (<0.05mm diameter) or bad level of porosity, and how large the pores will be if classified as bad

Fig. 1. In-process sensing in LMD [7] and examples of pyrometer data.

	Physics-Driven Approach Analytical and numerical models based on process mechanics	Data Science Approach Supervised learning methods that take in high-speed thermal images melt pools and put out a binary indicator of porosity
Advantages	 Useful for understanding the nature of pore formation and its characteristics 	 Can predict porosity during LMD Can handle complex data (high dimensionality, heterogeneity, large volume) Efficient and accurate
Disadvantages	 Can have incomplete or missing physics Requires calibration of model parameters Computationally expensive Lacks the ability of real-time prediction 	 Black-box methods don't incorporate physics knowledge Must be carefully trained with available experimental data Difficult to interpret, apply, or generalize for a wider set of process conditions

Physics-Driven Deep Learning Model

VGG16 Deep Learning Model

- VGG16 is a convolutional neural network (CNN), a type of neural network typically used to analyze images
- Proposed by K. Simonyan and A.
 Zisserman (University of Oxford) in 2014
- 92.7% accurate when completing a top-5 test in ImageNet, a dataset of over 14 million images that can be sorted into 1000 classes

Next Step: VGG16 + Finite Element Simulation + Empirical Physical Data

- This summer I will build the next iteration of this model that
 - Incorporates empirical data
 - Incorporates more simulated variables
 - Will potentially incorporate the physical data earlier in the model
- I intend to accomplish this using transfer learning on the pre-trained VGG16 from the Keras (Python deep learning API) library

Table 1: Full set of features extracted and transformed.

Pyrometer Smoothed radians from cubic spline interpolation 63	
Pyrometer Principal Components from FPCA 63	
Pyrometer Principal Components from PCA 63	
Pyrometer Maximum Temperature 1	
FEA; geometric Dimensions: length (a) , width (b) , height (c) 3	
FEA; geometric Rectangular prism volume = length \times width \times height (d) 1	
FEA; geometric Hemisphere volume = $2/3 \times \pi \times r^3$ where r is average 1	
of length and width (e)	
FEA; thermal cooling Maximum Temperature 1	
FEA; thermal cooling Area under curve of plot of line through center of 3	
bounds for x, y , and z directions $(h1, h2, h3)$	
FEA; thermal cooling Slope of line formed by peak of graph and bottom 3	
leftmost point for x, y , and z directions $(f1, f2, f3)$	
FEA; thermal cooling Slope of line formed by peak of graph and bottom 2	
rightmost point for x and y directions $(g1, g2)$	
Hybrid Residual by Eq. (4) 1	
Hybrid Layer number 1	

References

- *3D Printing with Laser Metal Deposition Cavitar Ltd.* Cavitar Ltd See What You Have Missed. (2021, January 12). https://www.cavitar.com/library/3d-printing-with-laser-metal-deposition/.
- Gawade, V., Singh, V., & Guo, W. (2021). Leveraging simulated and empirical data-driven insight to supervised-learning for porosity prediction in laser metal deposition. *Manuscript in Preparation*.
- McDermott, J. (n.d.). *Hands-on Transfer Learning with Keras and the VGG16 Model*. Learn Data Science -Tutorials, Books, Courses, and More. https://www.learndatasci.com/tutorials/hands-on-transfer-learning-keras/#:~:text=VGG16%20is%20a% 20convolutional%20neural,for%20Large%2DScale%20Image%20Recognition.
- VGG16 Convolutional Network for Classification and Detection. (2021, February 24). https://neurohive.io/en/popular-networks/vgg16/.
- W.". Guo et al., A physics-driven deep learning model for process-porosity causal relationship and porosity prediction with interpretability in laser metal deposition, CIRP Annals - Manufacturing Technology (2020), https://doi.org/10.1016/j. cirp.2020.04.049

Thank you to Dr. Guo and the DIMACS REU Program for your support and guidance on this project.

Thank you as well to the National Science Foundation; this work is supported by <u>NSF grant CCF-1852215.</u>