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Laser Metal Deposition (LMD) 

● Additive manufacturing (AM) technique in 
which a laser beam is used to fuse metal 
powder by melting it as it is deposited, layer 
by layer 

● Used in automotive, aerospace, energy, 
petrochemicals, and medical industries

● Benefits:
○ High build-up rate and density
○ Very customizable 
○ Reduces waste
○ Works for large components
○ Suitable for manufacturing and repair



Porosity

● Occurs when tiny cavities form in the metal as it 
is printed

● Various causes (insufficient energy input,  
overheating, raw material defects) 

● Can never be completely eliminated due to 
process instability

● Considered to be one of the most destructive 
defects in metal AM

○ Reduces static mechanical properties 
○ Causes significant scatter of fatigue

● Our goal: predict whether parts printed via LMD 
will have a “good” (negligible) or “bad” (at least 
one pore ≥ 0.05mm diameter) level of porosity



Physics-Driven Approach Data Science Approach

● Useful for understanding the 
nature of pore formation and its 
characteristics

● Can predict porosity during LMD
● Can handle complex data (high 

dimensionality, heterogeneity, 
large volume)

● Efficient and accurate

● Can have incomplete or missing 
physics

● Requires calibration of model 
parameters

● Computationally expensive
● Lacks the ability of real-time 

prediction

● Black-box methods don’t 
incorporate physics knowledge

● Must be carefully trained with 
available experimental data

● Difficult to interpret, apply, or 
generalize for a wider set of 
process conditions
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Physics-Informed Deep Learning Model

Adapted from W.''. Guo et al



Empirical LMD Data

● OPTOMEC LENSTM system with a 1Kw Nd: YAG 
laser was used to fabricate a thinwall structure from 
Ti-6Al-4V powders 

● A dual-wavelength pyrometer and an infrared (IR) 
camera captured thermal data in real time

○ 1564 melt pool images across a total of 60 layers 
during a 457s LMD process

○ Each raw image was routed to a separate CSV file 
as a 752*480 matrix of temperatures (°C)

○ Images are temporally independent (pyrometer 
was vertically stationary relative to the melt pool)

● True porosity measured by Micro-CT (3D imaging technique that uses x-rays to scan an object)
● Melt pool length and width were calculated by counting the number of pixels from the maximum 

temperature to the melting point in each direction 



Simulated LMD Data

● A Finite Element Analysis (FEA) 
model was used to obtain 
simulated melt pool data [8]

○ maximum melt pool 
temperature

○ melt pool length
○ melt pool width

● Fig. 2 shows the model setup
● Each simulated melt pool was 

matched to an empirical melt 
pool based on similar time and 
part of print [8]



Data Preprocessing

● Each empirical melt pool CSV file was converted into a 
224x224 pixel RGB image centered around the maximum 
temperature location using Python, OpenCV, and PlantCV

● Images were labeled “bad” (at least one pore ≥ 0.05mm 
diameter) or “good” and split into training and  test sets

○ 1486 “good” images, 71 “bad” images, 7 images that 
could not be clearly classified (latter removed for model 
training purposes)

● To account for class imbalance, “bad” training images 
were augmented (horizontal/vertical flips, brightness 
shifts) to create additional “bad” training data   

○ Training set: 1237 “good” and 1237 “bad” images
○ Test set:  249 “good” and 12 “bad” images

● A validation set consisting of 15% of the training set (185 
“good” and 185 “bad”) was then randomly portioned out



Deep Learning Model Architecture (VGG16)

● VGG16 is a convolutional neural 
network (CNN), a type of neural 
network typically used to analyze 
images

● Proposed by K. Simonyan and A. 
Zisserman (University of Oxford) in 
2014

● 92.7% accurate when completing a  
top-5 test in ImageNet, a dataset 
of over 14 million images that can 
be sorted into 1000 classes

Fig. 5: The VGG16 Architecture 



Physics-Informed Loss Functions
●  Deep learning models seek to minimize loss and use loss functions to 

evaluate the discrepancy between the true (ytrue) and predicted (ypred) 
label for a given input

● Categorical cross entropy loss is a popular choice for classification models 
(including our baseline deep learning-only model)
○ Since we have two classes, 

CCELoss(ytrue, ypred) = −t1log(s1) − (1 − t1) * log(1 − s1), 

where t1 and s1 are the true label and predicted label for Class 1 and 
(1 − t1) and (1 − s1) are the true label and predicted label for Class 2

● Current research [4, 5] has shown that effective physics/deep learning 
hybrid models can be constructed by using physical data to influence or 
constrain the loss function



Physics-Informed Loss 
Functions (cont.) Key

● R = residual maximum melt pool 
temperature

● l =  observed melt pool length
● w = observed melt pool width
● N = number of images
● ϵr = normalized percent error between 

empirical melt pool length:width ratio and 
simulated melt pool length:width ratio

● ϵt = normalized percent error between 
empirical maximum melt pool temperature 
and simulated maximum melt pool 
temperature

● λt  = temperature-informed term scaling 
coefficient 

● λr = length-to-width-ratio-informed term 
scaling coefficient 



Performance Metrics

● TP (true positive) = # of correctly identified “bad” images
● TN (true negative) = # of correctly identified “good” images
● FP (false positive) = # of “good” images incorrectly labeled “bad”
● FN (false negative) = # of “bad” images incorrectly labeled “good”



Baseline (Deep Learning-Only) Model Performance
● Training session parameters

○ Epochs = 100 (val. loss patience of 50)
○ Learning rate = 0.001 
○ Stochastic gradient descent (SGD) optimizer 
○ Categorical cross entropy loss function

● Best weights (based on lowest validation 
loss) from each training session were used 
to generate predictions 

● Training set performance
○ 98.86% accuracy
○ 99% precision (weighted average)
○ 99% recall (weighted average)

● Test set performance
○ 93.87% accuracy 
○ 91% precision (weighted average)
○ 94% recall (weighted average)

Fig. 6: Live accuracy (left) and loss (right) plots 
from the baseline model training session



Physics-Informed Models Performance



Physics-Informed Models Performance (cont.)



Conclusions
● Key findings:

○ While this physics-informed model was not able to improve the 
predictive capabilities of the deep learning model in every respect, 
some versions were able to improve upon the precision of the 
baseline model 

○ This improvement in precision 
■ Was due to an increase in the number of true positive 

predictions 
■ Came at the expense of the overall accuracy of the model 

● With these preliminary findings in mind, we will continue to 
explore and seek to maximize the effectiveness of incorporating 
both empirical and simulated melt pool data into a deep learning 
porosity prediction model
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