DATA-DRIVEN PRECISION MEDICINE
APPROACHES TO CANCER:
TUMOR DORMANCY

BY ERIN DAHL
DR. SUBHAJYOTI DE, PHD




Tumor Cell Dormancy
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Tumor Cell Dormancy in Pancreatic Cancer
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Pancreatic cancer survival statistics

Survival Age Improvement

Less than 1%

Survive pancreatic Age that pancreatic Pancreatic cancer
cancer for 10 or more cancer survival is survival in the UK has
years, 2010-11, highest, 2009-2013, not changed in the
England and Wales England last 40 years




Tumor Cell Dormancy in Pancreatic Cancer
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Workflow: Isolation and characterization of DTCs in human

Florescencea Single Cell RNA Seq

Activated
Cell Sorting
(FACS)

Single Cell Gene Expression Estimates Achieved
> Microfluidic Partitioning
» Barcoding techniques




Seurat Single Cell Genomics

» Normalization: Feature counts for each cell are divided by the
total counts for that cell and multiplied by the scale factor.
This is then natural-log fransformed

» Find Variable Features: Learn a statistical model of technical
noise directly from the data, and remove this without
dampening biological heterogeneity

» Anchors Between Datasets: Take into account neighbors (k).
Features identified in both samples are compared
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Gene Specific Results




Copy Number Variation (CNV)

Variation Amplifications
Deletions

-> Implications
I A B B B C =

Genes in reference genome

/  \

I AEBRBIBIBICH

CN Loss (Deletion) CN Gain

Copy Number Variation

Segment of DNA in which copy-number differences have been found.
The segment may range from one kilobase to several megabases in size.
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HoneyBADGER

Hidden Markov Model infegrated Bayesian
approach for detecting CNV and LOH events from

single-cell RNA-seq data HMM

statistical model that
can be used to
describe the evolution
of observable events
that depend on internal
factors, which are not
directly observable.

Data must be filtered for highly expressed shared
genes and scaled for library size differences

Inputted gene expression matrix is normalized using
reference data. We expect large-scale deviations in
expression from the reference on average to be
indicative of underlying CNVs

HMM identifies a number of candidate CNVs to test




Heatmap Visualization
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Continued Investigafion

- Data Handling within functions
- Com OvsComyl

Connection with overall goal

- Greater Understand Dormancy
- Use Dormancy for Cancer Treatment Improvements
- Personal Experience
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