Designing non-manipulable tournament rules

Jan Soukup, David Mikšaník Supervisor: Ariel Schvartzman

REU 2022, Rutgers University

This research is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 823748.

• Consider the following tournament where all teams play against each other exactly once.

Tournament Results						Points table		
	A	В	С	D		С	6	
A		Draw	Win	Draw		A	5	
В	Draw		Loss	Win		В	4	
C	Loss	Win		Win		D	1	
D	Draw	Loss	Loss				1	

• Suppose that the match between A and B was played as the last. Could they colluded so that one of them would won the tournament? • It is easy to see that they could.

Tournament Results						Points table		
	A	В	C	D		А	7	
А		Win	Win	Draw		С	6	
В	Loss		Loss	Win		В	3	
C	Loss	Win		Win		D	1	
D	Draw	Loss	Loss					

• We would like to come up with different rules to determine winners of tournaments that is "reasonable" and teams don't have any incentive to collude.

Definition

A *tournament* T on n teams is a complete directed graph with n vertices (we do not allow draws).

(B)

э

Definition

A tournament T on n teams is a complete directed graph with n vertices (we do not allow draws).

Definition

Given a tournament T, a *(tournament)* rule assigns to each player in T a chance to be the winner of T.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Definition

A *tournament* T on n teams is a complete directed graph with n vertices (we do not allow draws).

Definition

Given a tournament T, a *(tournament)* rule assigns to each player in T a chance to be the winner of T.

• Example of a rule: given an arbitrary tournament *T*, select the winner of *T* uniformly at random (this rules is not good).

Definition

A tournament T on n teams is a complete directed graph with n vertices (we do not allow draws).

Definition

Given a tournament T, a *(tournament)* rule assigns to each player in T a chance to be the winner of T.

- Example of a rule: given an arbitrary tournament *T*, select the winner of *T* uniformly at random (this rules is not good).
- The "reasonable" rules should satisfy:
 - ► (CC) If a team A beats every other team, then the chance that A is the winner of T is 1.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Definition

A tournament T on n teams is a complete directed graph with n vertices (we do not allow draws).

Definition

Given a tournament T, a *(tournament)* rule assigns to each player in T a chance to be the winner of T.

- Example of a rule: given an arbitrary tournament *T*, select the winner of *T* uniformly at random (this rules is not good).
- The "reasonable" rules should satisfy:
 - ► (CC) If a team A beats every other team, then the chance that A is the winner of T is 1.
 - (2-SNM) If teams A and B change the outcome of their match, then the joint probability that one of them will be the winner of the tournament cannot increase.

Known results

• The "reasonable" rules should satisfy:

- ► (CC) If a team A beats every other team, then the chance that A is the winner of T is 1.
- (2-SNM) If teams A and B change the outcome of their match, then the joint probability that one of them will be the winner of the tournament cannot increase.

Theorem

There is no rule that is both (CC) and (2-SNM).

Known results

- The "reasonable" rules should satisfy:
 - ► (CC) If a team A beats every other team, then the chance that A is the winner of T is 1.
 - (2-SNM) If teams A and B change the outcome of their match, then the joint probability that one of them will be the winner of the tournament cannot increase.

Theorem

There is no rule that is both (CC) and (2-SNM).

- We weaken the second property:
 - (2-SNM-α) If teams A and B change the outcome of their match, then the joint probability that one of them will be the winner of the tournament can increase by at most α.

Known results

• The "reasonable" rules should satisfy:

- ► (CC) If a team A beats every other team, then the chance that A is the winner of T is 1.
- (2-SNM) If teams A and B change the outcome of their match, then the joint probability that one of them will be the winner of the tournament cannot increase.

Theorem

There is no rule that is both (CC) and (2-SNM).

- We weaken the second property:
 - (2-SNM-α) If teams A and B change the outcome of their match, then the joint probability that one of them will be the winner of the tournament can increase by at most α.

Theorem

There exists a rule that is (CC) and (2-SNM-1/3) and no better rule exists.

- Generally, we consider the case when k teams collude:
 - (k-SNM-α) If teams A₁, A₂,..., A_k change the outcome of their matches, then the joint probability that one of them will be the winner of the tournament can increase by at most α.

- Generally, we consider the case when k teams collude:
 - (k-SNM-α) If teams A₁, A₂,..., A_k change the outcome of their matches, then the joint probability that one of them will be the winner of the tournament can increase by at most α.

Theorem

• Every rule that is (CC) and (k-SNM- α) satisfies $\alpha \geq \frac{k-1}{2k-1}$.

- Generally, we consider the case when k teams collude:
 - (k-SNM-α) If teams A₁, A₂,..., A_k change the outcome of their matches, then the joint probability that one of them will be the winner of the tournament can increase by at most α.

Theorem

- Every rule that is (CC) and (k-SNM- α) satisfies $\alpha \geq \frac{k-1}{2k-1}$.
- There exists a rule that is (CC) and (k-SNM-2/3).

- Generally, we consider the case when k teams collude:
 - (k-SNM-α) If teams A₁, A₂,..., A_k change the outcome of their matches, then the joint probability that one of them will be the winner of the tournament can increase by at most α.

Theorem

- Every rule that is (CC) and (k-SNM- α) satisfies $\alpha \geq \frac{k-1}{2k-1}$.
- There exists a rule that is (CC) and (k-SNM-2/3).
- Our goal is to improve the lower bound on α (if possible), for some k ≥ 3, and find a rule that achieve this lower bound.

- Generally, we consider the case when k teams collude:
 - (k-SNM-α) If teams A₁, A₂,..., A_k change the outcome of their matches, then the joint probability that one of them will be the winner of the tournament can increase by at most α.

Theorem

- Every rule that is (CC) and (k-SNM- α) satisfies $\alpha \geq \frac{k-1}{2k-1}$.
- There exists a rule that is (CC) and (k-SNM-2/3).
- Our goal is to improve the lower bound on α (if possible), for some k ≥ 3, and find a rule that achieve this lower bound.
- We will try to come up with other reasonable ways how to relax (CC) and (*k*-SNM) properties.

ヘロト 不得 トイヨト イヨト 二日