Designing non-manipulable tournament rules

Jan Soukup, David Mikšaník
Supervisor: Ariel Schvartzman

REU 2022, Rutgers University

This research is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 823748.

Introduction: an example

- Given $\binom{n}{2}$ outcomes between n teams (= tournament), determine the winner of the tournament (= tournament rule)
- Example: random single binary elimination bracket (RS2EB)

Introduction: an example

- Given $\binom{n}{2}$ outcomes between n teams (= tournament), determine the winner of the tournament ($=$ tournament rule)
- Example: random single binary elimination bracket (RS2EB)

Introduction: an example

- Given $\binom{n}{2}$ outcomes between n teams (= tournament), determine the winner of the tournament ($=$ tournament rule)
- Example: random single binary elimination bracket (RS2EB)

$$
r_{A, D}(T)=\frac{16}{24}
$$

Introduction: an example

- Given $\binom{n}{2}$ outcomes between n teams (= tournament), determine the winner of the tournament ($=$ tournament rule)
- Example: random single binary elimination bracket (RS2EB)

$$
r_{A, D}(T)=\frac{16}{24}
$$

$\{A, D\}$-adjecent tournament wrt T

Introduction: an example

- Given $\binom{n}{2}$ outcomes between n teams (= tournament), determine the winner of the tournament ($=$ tournament rule)
- Example: random single binary elimination bracket (RS2EB)

$$
r_{A, D}(T)=\frac{16}{24}
$$

Introduction: an example (continue)

Introduction: an example (continue)

$$
r_{A, D}(T)=\frac{16}{24}
$$

- $\alpha_{A, D}(T):=r_{A, D}\left(T^{\prime}\right)-r_{A, D}(T)=1-\frac{16}{24}=\frac{1}{3}$
- We can compute $\alpha_{X, Y}(T)$ for any pair of teams X and Y and any tournament T

Introduction: an example (continue)

$$
r_{A, D}(T)=\frac{16}{24}
$$

- $\alpha_{A, D}(T):=r_{A, D}\left(T^{\prime}\right)-r_{A, D}(T)=1-\frac{16}{24}=\frac{1}{3}$
- We can compute $\alpha_{X, Y}(T)$ for any pair of teams X and Y and any tournament T
- $\alpha:=$ maximum over all $\alpha_{X, Y}(T)$

Introduction: an example (continue)

$$
r_{A, D}(T)=\frac{16}{24}
$$

- $\alpha_{A, D}(T):=r_{A, D}\left(T^{\prime}\right)-r_{A, D}(T)=1-\frac{16}{24}=\frac{1}{3}$
- We can compute $\alpha_{X, Y}(T)$ for any pair of teams X and Y and any tournament T
- $\alpha:=$ maximum over all $\alpha_{X, Y}(T)$
- Fact: $\alpha=\frac{1}{3}$ (proved by Altman and Kleinberg [1])

Introduction: an example (continue)

$$
r_{A, D}(T)=\frac{16}{24}
$$

- $\alpha_{A, D}(T):=r_{A, D}\left(T^{\prime}\right)-r_{A, D}(T)=1-\frac{16}{24}=\frac{1}{3}$
- We can compute $\alpha_{X, Y}(T)$ for any pair of teams X and Y and any tournament T
- $\alpha:=$ maximum over all $\alpha_{X, Y}(T)$
- Fact: $\alpha=\frac{1}{3}$ (proved by Altman and Kleinberg [1])
- We say that the rule RS2EB is $2-S N M-\frac{1}{3}$

Known results

- Tournament rules should be also fair:
- (CC) If a team A beats every other team, then the chance that A is the winner of T is 1

Known results

- Tournament rules should be also fair:
- (CC) If a team A beats every other team, then the chance that A is the winner of T is 1

Theorem (Altman and Kleinberg [1], 2017)
There is no rule that is both (CC) and ($k-S N M-\alpha$) for $\alpha<\frac{k-1}{2 k-1}$.

Known results

- Tournament rules should be also fair:
- (CC) If a team A beats every other team, then the chance that A is the winner of T is 1

Theorem (Altman and Kleinberg [1], 2017)
There is no rule that is both (CC) and ($k-$ SNM $-\alpha$) for $\alpha<\frac{k-1}{2 k-1}$.
Theorem (Schvartzman et al. [2], 2019)
There is a rule that is both (CC) and ($k-S N M-\frac{2}{3}$) but not monotone.

Known results

- Tournament rules should be also fair:
- (CC) If a team A beats every other team, then the chance that A is the winner of T is 1

Theorem (Altman and Kleinberg [1], 2017)
There is no rule that is both (CC) and ($k-$ SNM $-\alpha$) for $\alpha<\frac{k-1}{2 k-1}$.
Theorem (Schvartzman et al. [2], 2019)
There is a rule that is both (CC) and ($k-S N M-\frac{2}{3}$) but not monotone.

Theorem (Dinev and Weinberg, 2022; not published yet)
There exists a rule that is monotone, (CC), (2-SNM- $\frac{1}{3}$), and (3-SNM- $\frac{31}{60}$).

Random single ternary elimination bracket (RS3EB)

Theorem
The rule RS3EB is monotone, (CC), and (3-SNM- α) for $\frac{31}{60}<\frac{227}{420} \leq \alpha \leq \frac{23}{27}$.

Meta-graph

- Tournament rules are just functions from the set of all tournaments to the set of probabilistic distributions selecting a winner
- We have only two main restrictions imposed on these rules

Meta-graph

- Tournament rules are just functions from the set of all tournaments to the set of probabilistic distributions selecting a winner
- We have only two main restrictions imposed on these rules
(CC) condition
- Impacts only specific tournaments

$$
r_{a}(T)=1
$$

(k-SNM- α) condition

- Impacts only specific pairs of tournaments

Meta-graph

- Tournament rules are just functions from the set of all tournaments to the set of probabilistic distributions selecting a winner
- We have restrictions imposed on a subset of vertices and a subset of edges

Meta-graph

- We have restrictions imposed on a subset of vertices and a subset of edges
- If a tournament is not adjacent to a tournament with restriction (imposed by (CC) property) we distribute the probability uniformly
- The remaining tournaments (the middle layer) need a bit more work

Theorem

There is a tournament rule that is monotone, (CC), (2-SNM- $\frac{1}{3}$), and (3-SNM- $\frac{1}{2}$).

- Previously, there was no known rule that was both (CC) and (3-SNM- α) for $\alpha<\frac{31}{60}$.

Rule extensions

- It is feasible to design fair and non-manipulable rules for a small number of teams on a computer
- We would like to extend these rules to more teams

Rule extensions

- It is feasible to design fair and non-manipulable rules for a small number of teams on a computer
- We would like to extend these rules to more teams

Rule extensions

vertices of

- a manipulating group

- This extended rule is still (CC)
- If the size of a manipulating group is a lot smaller than n then this rule is (k-SNM- $(\alpha+\varepsilon)$) if the original rule is (k-SNM- (α))

References

[1] Altman, A., Kleinberg, R.: Nonmanipulable randomized tournament selections. Proceedings of the National Conference on Artificial Intelligence 2, 686-690 (01 2010)
[2] Schvartzman, A., Weinberg, S.M., Zlatin, E., Zuo, A.: Approximately strategyproof tournament rules: on large manipulating sets and cover-consistence. In: 11th Innovations in Theoretical Computer Science Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 151, pp. Art. No. 3, 25, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2020)

Thank you for your attention!

