Sphere Packings and Number Theory: Bianchi Groups and Apollonian Circle Packings

 Mentor: Prof. Alex KontorovichDevora Chait
DIMACS Summer REU

June 4, 2018

Bianchi Groups

Some preliminary definitions

- $G L_{n}(R)$ is the general linear group of $n \times n$ invertible matrices whose entries belong to some ring R . Since they are invertible, their determinants are nonzero.

Bianchi Groups

Some preliminary definitions

- $G L_{n}(R)$ is the general linear group of $n \times n$ invertible matrices whose entries belong to some ring R. Since they are invertible, their determinants are nonzero.
- A Bianchi group is a special linear subgroup of $G L_{2}$, consisting of 2×2 matrices whose det $=1$. The entries in an element of a Bianchi group are Gaussian integers, which are complex numbers of the form $a+b i$ where a and b are integers.

Bianchi Groups

Some preliminary definitions

- $G L_{n}(R)$ is the general linear group of $n \times n$ invertible matrices whose entries belong to some ring R. Since they are invertible, their determinants are nonzero.
- A Bianchi group is a special linear subgroup of $G L_{2}$, consisting of 2×2 matrices whose det $=1$. The entries in an element of a Bianchi group are Gaussian integers, which are complex numbers of the form $a+b i$ where a and b are integers.
- Notation: Bianchi group $=S L_{2}(Z[\sqrt{-1}])$

Bianchi Groups

Constructing an element

Questions:
Given two entries in an element of a Bianchi group, can we construct the remaining two entries?

Bianchi Groups

Constructing an element

Questions:
Given two entries in an element of a Bianchi group, can we construct the remaining two entries?
How do we even know that such entries exist within the requirements of $S L_{2}(Z[\sqrt{-1}])$?

Bianchi Groups

Constructing an element

As long as the norm of the entries are co-prime, the remaining two entries can be constructed.
For Gaussian integers, norm $=(a+b i)(a-b i)=a^{2}+b^{2}$.
To construct the element, we use modular arithmetic.

Bianchi Groups

Constructing an element

Example:

$$
M=\left[\begin{array}{cc}
1+2 \mathrm{i} & 8+2 \mathrm{i} \\
c & d
\end{array}\right]
$$

Bianchi Groups

Constructing an element

Example:

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1+2 i & 8+2 i \\
c & d
\end{array}\right] \\
\operatorname{norm}(1+2 i)=5 \\
\operatorname{norm}(8+2 i)=68
\end{gathered}
$$

Bianchi Groups

Constructing an element

$$
M=\left[\begin{array}{cc}
1+2 \mathrm{i} & 8+2 \mathrm{i} \\
c & d
\end{array}\right]
$$

$$
(1+2 i) c-(8+2 i) d=1
$$

Bianchi Groups

Constructing an element

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1+2 i & 8+2 i \\
c & d
\end{array}\right] \\
(1+2 i) c-(8+2 i) d=1 \\
-(8+2 i) d=1 \bmod (1+2 i)
\end{gathered}
$$

Bianchi Groups

Constructing an element

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1+2 i & 8+2 i \\
c & d
\end{array}\right] \\
(1+2 i) c-(8+2 i) d=1 \\
-(8+2 i) d=1 \bmod (1+2 i) \\
(8+2 i) d=-1 \bmod (1+2 i)
\end{gathered}
$$

Bianchi Groups

Constructing an element

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1+2 i & 8+2 i \\
c & d
\end{array}\right] \\
(1+2 i) c-(8+2 i) d=1 \\
-(8+2 i) d=1 \bmod (1+2 i) \\
(8+2 i) d=-1 \bmod (1+2 i) \\
-d(1+2 i)+(8+2 i) d=-1 \bmod (1+2 i)
\end{gathered}
$$

Bianchi Groups

Constructing an element

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1+2 i & 8+2 i \\
c & d
\end{array}\right] \\
(1+2 i) c-(8+2 i) d=1 \\
-(8+2 i) d=1 \bmod (1+2 i) \\
(8+2 i) d=-1 \bmod (1+2 i) \\
-d(1+2 i)+(8+2 i) d=-1 \bmod (1+2 i) \\
7 d=-1 \bmod (1+2 i)
\end{gathered}
$$

Bianchi Groups

Constructing an element

Since $\operatorname{norm}(1+2 i)=5$, we have $0 \equiv 5 \bmod (1+2 i)$

Bianchi Groups

Constructing an element

Since $\operatorname{norm}(1+2 i)=5$, we have $0 \equiv 5 \bmod (1+2 i)$
Residue class for $1+2 i$:

$$
0,1,2,3,4
$$

Bianchi Groups

Constructing an element

Since norm $(1+2 i)=5$, we have $0 \equiv 5 \bmod (1+2 i)$
Residue class for $1+2 i$:

$$
\begin{gathered}
0,1,2,3,4 \\
7 d=-1 \bmod (1+2 i) \\
\text { becomes } \\
2 d=4 \bmod (1+2 i)
\end{gathered}
$$

Bianchi Groups

Constructing an element

Since norm $(1+2 i)=5$, we have $0 \equiv 5 \bmod (1+2 i)$
Residue class for $1+2 i$:

$$
\begin{gathered}
0,1,2,3,4 \\
7 d=-1 \bmod (1+2 i) \\
\text { becomes } \\
2 d=4 \bmod (1+2 i) \\
d=2
\end{gathered}
$$

Bianchi Groups

Constructing an element

$$
(1+2 i) c-(8+2 i) 2=1
$$

Bianchi Groups

Constructing an element

$$
(1+2 i) c-(8+2 i) 2=1
$$

$$
(1+2 i) c=17+4 i
$$

Bianchi Groups

Constructing an element

$$
(1+2 i) c-(8+2 i) 2=1
$$

$$
(1+2 i) c=17+4 i
$$

$$
5 c=(17+4 i)(1-2 i)
$$

Bianchi Groups

Constructing an element

$$
\begin{gathered}
(1+2 i) c-(8+2 i) 2=1 \\
(1+2 i) c=17+4 i \\
5 c=(17+4 i)(1-2 i)
\end{gathered}
$$

$$
5 c=25-30 i
$$

Bianchi Groups

Constructing an element

$$
\begin{gathered}
(1+2 i) c-(8+2 i) 2=1 \\
(1+2 i) c=17+4 i \\
5 c=(17+4 i)(1-2 i) \\
5 c=25-30 i \\
c=5-6 i
\end{gathered}
$$

Bianchi Groups

Constructing an element

$$
M=\left[\begin{array}{cc}
1+2 \mathrm{i} & 8+2 \mathrm{i} \\
c & d
\end{array}\right]
$$

Bianchi Groups

Constructing an element

$$
M=\left[\begin{array}{cc}
1+2 i & 8+2 i \\
5-6 i & 2
\end{array}\right]
$$

Bianchi Groups

Constructing an element

$$
\begin{gathered}
M=\left[\begin{array}{cc}
1+2 i & 8+2 i \\
5-6 i & 2
\end{array}\right] \\
(1+2 i)(5-6 i)-(8+2 i) 2=1
\end{gathered}
$$

Bianchi Groups

Mobius Transformations

- Geometrically, a Mobius transformation maps a plane to a sphere, shifts that sphere, and then maps that shifted sphere back to the plane

Bianchi Groups

Mobius Transformations

- Geometrically, a Mobius transformation maps a plane to a sphere, shifts that sphere, and then maps that shifted sphere back to the plane
- Algebraically, a Mobius transformation on a matrix

$$
M=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]
$$

is $f(z)=\frac{a z+b}{c z+d}$

Bianchi Groups

Mobius Transformations

- A subset of Mobius transformations on a Bianchi group turns out to give us the Apollonian circle packing!

Thank you to the Rutgers Mathematics Department and the National Science Foundation for the support for my project.

