Entire List Coloring

David Lapayowker
Advisor: Dr. Cranston

July 17, 2008
Graph Coloring, A Review

A **Graph** consists of a series of vertices connected by edges.

To **color** a graph means to assign a color to every vertex such that no two vertices that share an edge also share a color.

Many applications of graph coloring call for finding the smallest number of colors necessary to color the graph. This is the **chromatic number**, and is denoted χ.
An *Entire Coloring* is much like a vertex coloring, except you also color all the edges and faces of the graph, so that no two adjacent elements share a color. This is denoted χ_{vef}.

Figure: Example of entire coloring. Image courtesy of www.ams.org
Entire Coloring

An *Entire Coloring* is much like a vertex coloring, except you also color all the edges and faces of the graph, so that no two adjacent elements share a color. This is denoted χ_{vef}.

![Example of entire coloring](image)

Figure: Example of entire coloring. Image courtesy of www.ams.org

For all graphs G, $\chi_{vef}(G) > \chi(G)$.
A *List Coloring* is a type of coloring in which every vertex must be colored from a specified list, unique to each vertex. This is denoted χ^L.
A **List Coloring** is a type of coloring in which every vertex must be colored from a specified list, unique to each vertex. This is denoted χ^L.

A graph is *k list colorable* if, given that every vertex has a list of colors of size k, it is always possible to choose a color in each vertex’s color list to properly color the graph *no matter what those lists contain*.
A **List Coloring** is a type of coloring in which every vertex must be colored from a specified list, unique to each vertex. This is denoted χ^L.

A graph is *k list colorable* if, given that every vertex has a list of colors of size k, it is always possible to choose a color in each vertex’s color list to properly color the graph *no matter what those lists contain*.

For all graphs G, $\chi^L(G) \geq \chi(G)$.

David Lapayowker Advisor: Dr. Cranston ()
What’s the obvious combination of all these things? Entire list colorings, denoted χ^L_{vef}.
What’s the obvious combination of all these things? Entire list colorings, denoted χ_{vef}^L.

If the maximum degree of a graph G is given by Δ, then it is known that $\chi_{vef}(G) \leq \Delta + 4$ if $\Delta \geq 6$.
What’s the obvious combination of all these things? Entire list colorings, denoted χ^L_{vef}.

If the maximum degree of a graph G is given by Δ, then it is known that $\chi_{vef}(G) \leq \Delta + 4$ if $\Delta \geq 6$.

However, a similar statement can only be made for $\chi^L_{vef}(G)$ if $\Delta \geq 12$.
What’s the obvious combination of all these things? Entire list colorings, denoted χ_{vef}^L.

If the maximum degree of a graph G is given by Δ, then it is known that $\chi_{vef}(G) \leq \Delta + 4$ if $\Delta \geq 6$.

However, a similar statement can only be made for $\chi_{vef}^L(G)$ if $\Delta \geq 12$.

We wanted to see if we could translate arguments about entire colorings into entire list colorings, and improve on the second lower bound.
Theorem

All planar graphs are 6-list colorable.
Theorem

All planar graphs are 6-list colorable.

Lemma

All planar graphs have a vertex of degree 5 or less.

Proof follows from Euler’s formula for planar graphs.
Example: 6-List Colorability

Find this 5^- vertex, and remove it from the graph.
Example: 6-List Colorability

Find this 5^- vertex, and remove it from the graph.

By induction, color all remaining vertices from their lists.
Example: 6-List Colorability

Find this 5− vertex, and remove it from the graph.

By induction, color all remaining vertices from their lists.

Add the removed vertex back and color it from its list.
Questions?