
Visualization of k-connected Components and
Minimum Separating Sets of Fixed Points of

Degree Peeling
James Abello

Rutgers University
Piscataway, NJ, USA

Email: abelloj@cs.rutgers.edu

Daniel Nakhimovich
The Cooper Union

New York, NY, USA
Email: nakhimov@cooper.edu

Abstract—
Project dates: June – July 2018
Graphs are an excellent form for the visualization of data because they
clearly shows how individual data points are connected. However, for
large sets of data, a direct visualization of a graph is indecipherable
to the human eye. Separating sets and k-connected components are
interesting structures in graphs that highlight critical data points
and clusters of highly connected points respectively. In this paper,
we develope an algorithm that uses minimum separating sets to
decompose a graph into a hierarchy of k-connected components. The
complexity of the algorithm depends linearly on the number of k-
connected components in the graph. For each k-connected component
K = (V,E), however, the complexity of finding its minimum
separating set is O(nm

(
n
2

)
) where n = |V | and m = |E|. By using

different approximate procedures this complexity can be improved
to O(nm) or at more cost to accuracy to O(n + m). Performing
the separating set decomposition creates a tree-structured map of the
decomposed graph that more easily shows the connectivity of the
graph and consequently the data it represents.

I. PROJECT DESCRIPTION

With the ever expanding availability of data, good visu-
alization tools are more important than ever to aid people
in analyzing data quickly. A popular way to visualize data
is through the use of graphs as they are excellent sturctures
for showing connections among a set of data. Fortunately,
the connectivity of graphs is a heavily studied topic and
many algorithms exist to analyze and manipulate the structures
of graphs. The graph structures that we will be focusing
in this paper are minimum separating sets and k-connected
components. There structures are insteresting to visualize as
they often reveal critical data points or groupings of data
points in the data that the graph represents. For example,
minimum separating sets could show critical failure points
in a computer network, bottlenecks in distribution system, or
even influential individuals in a social network. On the other
hand, k-connected components offer a way to measure the
redundancy in a computer network and distribution system
and the closeness of groups in a social network.

For the purpose of this paper we will specifically focus on
these structures within Fixed Points of Degree Peeling. The
peeling process and an algorithm to perform a decomposition

of a graph into Fixed Points of Degree Peeling is described in
detail in [1].

In this paper we first define basic graph-theortic concepts as
well as k-connected components and minimum separating sets.
Then, we introduce an algorithm for a graph decomposition
into a hierarchy of k-connected components. Next, we propose
some relaxations that allow for a faster algorithm imple-
mentation which still produces a decomposition of similar
macro-structure to the ideal version. Finally we show the
decomposition applied to a real data set and offer some
interpretations for what it shows.

II. BASIC DEFINITIONS

An undirected graph G = (V,E) is a tuple of a vertex
set V and an edge set E, which consists of unordered pairs of
elements in V . A path in G is a sequence of vertices such that
each consecutive pair of vertices is in E. A graph is said to be
connected if there exists a path between any two vertices in V .
A directed graph is very similar to a graph except that each
element of E is an ordered pair of elements in V . Each edge is
often described as (and represented visualy as) pointing from
its source vertex to its target vertex. The degree of a vertex
v ⊂ V denoted by deg(v) is the number of edges containing
v. The diameter of a graph is the longest path of shortest
distance between any two vertices.

A tree is an undirected graph in which any two vertices
are connected by exactly one path. A rooted tree is simply a
tree with one vertex chosen as the root. The choice of root is
only significant in context. One such instance is for a directed
rooted tree where all the edges point either towards the root
or away from the root. A leaf of a tree is any vertex v ⊂ V
such that deg(v) = 1. A node of a tree is any vertex that is
not a leaf.

A separating set V ′ ⊂ V is a distinct set of vertices
that, when removed from G, induces a subgraph that is not
connected. A minimum separating set is any such V ′ where
|V ′| ≤ |Si|,∀Si ∈ S the set of separating sets of G.

A graph G is said to be k-connected if |V | > k and there
doesn’t exist a minimum separating set V ′ with |V ′| < k.

III. SEPARATING SET DECOMPOSITION

Fig. 1. Separating Set Decomposition of Peel Layer 11 of Rutgers MS
students’ study plans.

A. Decomposition Algorithm

The Separating Set Decomposition produces a directed
rooted tree with the edges pointing towards the root. Each
node in the Separating Set Decomposition represents a k-
connected component of the graph, k being the label of the
vertex (see Fig. 1). The children of each node are the con-
nected components resulting from spliting the graph along the
minimum separating set of the given k-connected component
(see Ftn. split). The leaves of the tree either represent k-
connected components that don’t have a minimum separating
set (complete graphs) or trivial components (trees).

Ftn. split
Input: A graph G with separating set S
Output: A set of n connected components

C = {G1, G2, ...Gn}, Gi ⊂ G ∀1 ≤ i ≤ n
function split (G,S):

G′ ← G \ S
C ← {}
for Q in connected components of G do

C ← C ∪ {Q ∪ S}
end
return C

end

To produce the full Separating Set Decomposition one needs
to create the tree by recursively spliting a graph along the
minimum separating set (see Alg. 1).

Since the Separating Set Decomposition is recursive, its
complexity depends largely on the topology of the graph in
question; namely, the number of k-connected components.
Each recursive step has a complexity bounded by the com-
plexity of finding the minimum separating set as the rest of
the algorithm’s operations are either constant time or linear
with respect to number of vertices. As you’ll see in the next

Alg. 1: Separating Set Decomposition
Input: A graph G, a directed rooted tree T (possibly

empty)
Output: A directed rooted tree T ′ or nothing
function decomposition (G,T):

if T = ∅ then
r ← G
V ′
G ← {r}

E′ ← {}
T ′ ← (V ′

G, E
′)

decomposition (G,T ′)
return T ′

end
S ← minSeparatingSet (G)
k ← |S| C ← split(G,S)
if |C| = 1 then

return
end
V ′
G ← {}

E′ ← {}
for Q in C do

V ′
G ← V ′

G ∪ {Q}
E′ ← E′ ∪ {({Q}, {G})}
decomposition (Q,T)

end
(VG, E)← T
T ← (VG ∪ V ′

G, E ∪ E′)
end

section the worst case complexity of finding the minimum
separating set is O(n2

(
n
2

)
) where n = |V |.

B. Finding the minimum separating set

To find the minimum separating set, we can compare the
minimum separating set between every pair of vertices. An
algorithm for finding the minimum separating cut between to
vertices is described in detail in [2] but the basic idea is to find
the minimum edge cut of an auxilariy graph using your favorite
flow algorithm and establishing a correspondance between that
minimum edge cut of the auxilariy graph to a minimum vertex
cut (or separating set) of the original graph. The auxilary graph
is formed by replacing each vertex v with a vertex pair v1, v2
and an edge pointing from v1 to v2. Then for each edge e =
(u, v) in the original graph, replace that edge with two directed
edges e1 = (u2, v1) and e2 = (v2, u1). See Fig. 2 for a visual
illusration.

Since the algorithm to find the minimum separating set in
[2] is bounded in complexity by the max flow algorithm, [3]
garauntees us a complexity of O(nm) where n = |V | and
m = |E| if we consider all edge weights to be 1. Thus,
including the fact that we need to check every pair of vertices,
the complexity for the finding the minimum separating set of
a graph is at worst O(nm

(
n
2

)
).

Fig. 2. Example transformation from an undirected source graph (left) to an
auxilary graph (right)

IV. APPROXIMATE MINIMUM SEPARATING SET
TECHNIQUES

Although it is nice to know that finding the minimum
separating set can be done with relatively low polynomial
complexity with respect to the number of vertices and edges,
for large data sets that complexity needs to be imporoved
in order to work for visualization tasks. In this section we
will discuss two approximate algorithms that are better in
complexity and justify their loss in exactness.

A. Distant Vertex Pair

Finding the min vertex cut between every pair of vertices
is rather wasteful. If there is only one minimum separating
set than it will be found rather quickly as the majority of
vertex pairs will be separated by it. On the other hand if there
are multiple minimum separating sets than we have no reason
to prefer one over the other. So, instead of finding the min
cut between every pair of vertices one can simply check a
pair of vertices that are far apart. This distant vertex pair
will be separated by the same vertices as others near them
if there is only one minimum separating set and if there are
multiple minimum separating sets than the distant vertex pair
is likely to have at least one of the minimum separating sets
between them. Of course, there is no absolute garauntee that
the min vertex cut between the distant vertex pair will be a
minimum separating set for the entire graph. For instance, if
the all minimum separating sets of the graph included those
two vertices than this approuch would not find any of them.

Ideally, the vertex pair to pick would be a pair of vertices
on the diameter of the graph but finding the actual diameter
of a graph would actually introduce more complexity. Instead
one can use a pseudo diameter algorithm as descibed and
implemented in [4]. The complexity of this algorithm is
O(n+m) where n = |V | and m = |E|. With the relaxation of
only checking a distant vertex pair, the complexity for finding
a pseudo minimum separating set is bounded by just one run
of the max flow algorithm and thus becomes O(nm).

B. Choosing Between Minimum Separating Set Candidates

The previous approuch, though offering a major improve-
ment in complexity, is still bounded by the complexity of a
max flow algorithm. Abandoning the use of a max flow algo-
rithm altogether could potentially yield a great improvement
in complexity for finding a pseudo minimum separating set.
A simple way of finding a pseudo minimum separating set

is by picking the smallest separating set out of a handfull of
minimum separating set candidates. Below is a procedure for
finding good candidates that borrows from the idea of distant
vertex pairs and appears to work well empirically:

1) Find a distant vertex pair as described in section IV-A.
2) Using breadth first search label each vertex in the graph

with the distance from each vertex in the distant vertex
pair.

3) Each group of vertices that are labeled with the same
distance from the same vertex is a separating set due to
the nature of a breadth first search so choose them as
candidates for a minimum separating set.

4) Check if the group of vertices that are equidistant from
both vertices in the distant vertex pair are a valid sepa-
rating set and if they are then add them as a candidate.

Although the accuracy of this procedure is not as well justified
for finding a pseudo minimum separating set as the approach
IV-A, when used for the purposes of Alg. 1 the overall
macro-structure of the decomposition looks very similar to
the decomposition using the pseudo minimum separating set
algorithm of approach IV-A. Meanwhile the complexity of this
procedure is only bounded by that of a breadth first search.
Thus, if one accepts the loss in exactness, the complexity for
the finding a pseudo minimum separating set can be reduced
to O(n+m) where n = |V | and m = |E|.

V. APPLICATION AND INTERPRETATION

The data set we will be examining in this section is a set of
protein structures. When viewed in graph form, the vertices
represent different protein molucules and an edge between
two vertices tells us that those two protein molucules share
a high similarity in structure. Also, the subset of data which
will be shown here is from Peel layer 5 of the Iterative Edge
Core Decomposition described in [1] and contains only 1301
vertices and 4641 edges.

A. Visualization

In Fig. 3 the entirety of Peel Layer 5 is shown through an
ARF layout as described in [4]. Although a few clusters are
visible it is relatively difficult to make much sense of how
different protein molucules are related. In Fig. 4 we have the
Separating Set Decomposition which is displayed in a radial
tree format that is much easier for a person to follow. In effect
the Separating Set Decomposition acts as a map where the
leaves are the atomic components of a graph and the nodes
shows connections between the atomic components or between
other nodes (see Fig. 5). By looking at a leaf and working your
way towards the root, one can get a much better sense of how
that piece of the graph connects to the entire graph as a whole.

B. Interpretation and Conclusion

Although biology is out of our expertise, considering the na-
ture of the Separating Set Decomposition and what the vertices
and edges of the original graph represent, one could imagine
that looking at separating sets could help one find proteins
that were a turning point in some evolutionary process. At

Fig. 3. Peel Layer 5 of Protein Structure Data.

Fig. 4. Separating Set Decomposition of Peel Layer 5 of Protein Structure
Data.

the very least, the k-connected components that the separating
sets divide can highlight groups of protein molecules with very
similar structures. And using the map, one can see how these
groups share similarites between other groups.

Ultimately, biology aside, the power of the Separating Set
Decomposition is to decompose a large graph that is hard to
visualize. The decomposition creates a map of the graphs k-
connectivity that can then be easily visualized by a computer
and provide insight about the data represented in the graph to
an informed user.

REFERENCES

[1] J. Abello and F. Queyroi, “Fixed points of degree peeling,” in 2013
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, Niagara, Ontario, Canada, Aug. 2013, pp. 256–263.

[2] S. Acid and L. M. de Campos, “An algorithm for finding minimum d-
separating sets in belief networks,” in Twelfth international conference on
Uncertainty in artificial intelligence, Portland, OR, Aug. 1996, pp. 3–10.

[3] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” ACM (JACM), vol. 19, Apr. 1972.

[4] T. P. Peixoto, “The graph-tool python library,” figshare, 2014. [Online].
Available: http://figshare.com/articles/graph tool/1164194

Fig. 5. Zoomed in View of the Separating Set Decomposition (top) and the
subgraph corresponding to the highligted portion of the decomposition with
the pseudo minimum separating set highlighted in yellow (bottom).

