Peeling Set Systems

Daniel Nakhimovich
PI: James Abello

Data to Collection of Sets

student1: course1,course2,...
student2: course5,course2,...

Sets to Region Graphs

Sets to Region Graphs

Problem?

Vertices: 99
Edges: 408

Iterative Edge Core Decomposition

Iterative Edge Core Decomposition

Problem?

Vertices: 572
Edges: 5237

k-connectivity

- A graph is connected when there is a path between every pair of vertices
- A separating set of a graph is a set of vertices that when removed from the graph cause the resulting induced sub-graph to be disconnected.
- A graph is k-connected if it has more than k vertices and does not have a separating set of less than k vertices.

k-connected component decomposition

Demo

$$
x_{2}=8
$$

$$
A^{2} x
$$

Minimum Separating Set

- Flow?
- yes, but we need a transformation:

- Remark: this only gives us minimum separating set between 2 vertices, not overall.
- O(VE)

Minimum Separating Set

- Approximations:

1. Don't check every pair of vertices, just check the pair of vertices furthest apart. (actually lets relax that to just far apart, $\mathrm{O}(\mathrm{V}+\mathrm{E})$ vs $\mathrm{O}\left(\mathrm{V}^{\wedge} 3\right)$)
2. Instead of finding min cut with flow algorithms on auxiliary graph, just compare a few minimum separating set candidates.

- Candidate Finding Procedure:

1. Run a breadth first searches starting from each of those vertices furthest apart from each other. ($O(V+E)$)
2. Note that each depth level in the BFS trees is a valid separating set and thus a candidate.
3. Find the intersection of the middle depth level of both BFS trees and if it is a valid separating set include it as a candidate. $(O(V+E))$

Next

1. Decompose more data

- Dreams
- Drugs
- Wiki-Votes
- etc.

2. Look for structures that arise
3. Find more minimum separating set candidates

Special Thanks

- Grant: Computer-Human Graph TeleDiscovery (IIS-1563971)
- Principal Investigator: James Abello
- Region Graph Visuals: Monica Bansal
- Code Library used in Demo: Tiago P. Peixoto, "The graph-tool python library", figshare.
(2014) DOI: 10.6084/m9.figshare. 1164194 [sci-hub, @tor]

