Forbidden Subgraphs of Competition Graphs

Kaleigh Clary
Gene Fiorini
Brian Nakamura
Graph Theory

• Directed graph
 ▪ Each edge has an associated direction
 ▪ Every directed, acyclic graph has at least one source and one sink node

• Subgraph
 ▪ A graph $H = (S, A)$ is a subgraph of $G = (V, E)$ if $S \subseteq V$ and all adjacency relationships of G restricted to this subset are preserved in H

• Forbidden subgraph
 ▪ A graph H is forbidden in G if it is not isomorphic to any subgraph of G
 ▪ Forbidden subgraph characterization
 • Trees: connected graphs with no cycles
Graph Theory

• Directed graph
 ▪ Each edge has an associated direction
 ▪ Every directed, acyclic graph has at least one source and one sink node

• Subgraph
 ▪ A graph \(H = (S, A) \) is a subgraph of \(G = (V, E) \) if \(S \subseteq V \) and all adjacency relationships of \(G \) restricted to this subset are preserved in \(H \)

• Forbidden subgraph
 ▪ A graph \(H \) is forbidden in \(G \) if it is not isomorphic to any subgraph of \(G \)
 ▪ Forbidden subgraph characterization
 ▪ Trees: connected graphs with no cycles
The competition graph $C(D)$ of a digraph $D = (V,A)$ has the same vertex set as D, and two distinct vertices x, y are adjacent in $C(D)$ if there is some vertex $z \in V$ (possibly x or y) such that $xz, yz \in A$.
The Problem

- Let \(V \) be a finite set of \(\mathbb{R}^n \). Let \(D \) be a digraph such that \(V(D) = V \) and there is an edge from \((a_1, a_2, ..., a_n)\) to \((b_1, b_2, ..., b_n)\) if and only if \(a_i > b_i \) \(\forall i \).

- Can you list forbidden subgraphs of the competition graph \(C(D) \) of \(D \)?
Claw Graphs

- **Claw Graph**
 - A tree on n nodes with one node having vertex degree $n-1$ and the other $n-1$ nodes having vertex degree 1

- **Theorem:** Any subgraph with maximum degree $n-1$ is forbidden in $C(D)$
 - **Lemma:** There is always one isolated vertex in $C(D)$
 - Let v be a vertex of degree $n-1$ in $C(D)$
 - There are no loops or multiedges, so there must be an edge between v and the other $n-1$ vertices, leaving no isolated vertices
Other Forbidden Subgraphs

• There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
 ▪ Construction of an example
Other Forbidden Subgraphs

• There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
 ■ Construction of an example

The line $x = y = z$ in \mathbb{R}^3
Other Forbidden Subgraphs

- There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
 - Construction of an example

The line $x = y = z$ in \mathbb{R}^3
Other Forbidden Subgraphs

- There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
 - Construction of an example

The line $x = y = z$ in \mathbb{R}^3
Other Forbidden Subgraphs

- There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
 - Construction of an example

The line $x = y = z$ in \mathbb{R}^3

Digraph D – Note that a_1 is receiving arcs from all other vertices
Other Forbidden Subgraphs

- There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
 - Construction of an example

The line $x = y = z$ in \mathbb{R}^3

Digraph D – Note that a_1 is receiving arcs from all other vertices

Competition graph $C(D)$ is a complete K_{n-2} with a_1 isolated
Domain Restriction

- Suppose you have two lines through the origin $y = ax$, $y = bx$, where $a \neq b$, and suppose you distribute n points on these two lines.

- What are the forbidden subgraphs of the competition graphs generated from our relation?
Domain Restriction

• There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
Domain Restriction

• There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
Domain Restriction

- There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
Domain Restriction

• There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
Domain Restriction

- There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
Domain Restriction

• There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$

Dominating line - A line of positive slope connecting points on two different lines
Domain Restriction

- There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
Domain Restriction

- There are no forbidden subgraphs of $C(D)$ with maximum degree less than or equal to $n-2$
Future Work

- Other cases in the domain restriction
- Domain restriction is currently only in two dimensions
 - Extend it to three dimensions, k dimensions
- Increase the number of lines
- Consider other domain restrictions
 - Points distributed in a small grid in \mathbb{R}^2