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Spectrum (eigenvalues) and geometry

Ω = [0, a]× [0, b] ⊆ R2.

∆f = −λf such that f ≡ 0 on bΩ,

∆ =
∂2

∂x2
+

∂2

∂y2
.

Obtain eigenvectors and eigenvalues:

fn,m (x , y) = sin
(nπx

a

)
sin
(mπy

b

)
and λn,m =

(nπ
a

)2
+
(mπ

b

)2
,

where n,m ∈ N.

N (λ) = # {(n,m) : λn,m ≤ λ}.

Can show:

lim
λ→∞

N (λ)

λ
=

ab

4π
=

vol (Ω)

4π
.
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Weyl’s law

Ω ⊆ Rd is a bounded domain.

N (λ) is the number of positive eigenvalues (counting their
multiplicities) less than λ of the standard Laplacian,

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
d

.

Weyl’s law:

Theorem (Weyl-1911)

lim
λ→∞

N (λ)

λd/2
=

vol (Ω)

2dπd/2Γ
(
d
2 + 1

) .
One can generalize Weyl’s law to Riemannian manifolds.
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Weyl’s law on flat tori

T = Λ \ Rd , where Λ is a discrete subgroup of Rd .

Example: Z2 \ R2 is a flat torus.

Eigenvalues of Laplacian on T :
{

4π2 |λ′| 2 : λ′ ∈ Λ′
}

, Λ′ is the dual
lattice.

Example: Dual lattice of 2Z⊕ Z is 1
2Z⊕ Z.

Same analysis as last time:

lim
λ→∞

N (λ)

λd/2
=

vol (T )

2dπd/2Γ
(
d
2 + 1

) .
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CR manifold

CR stands for either Cauchy-Riemann or complex-real.

Smooth manifolds but with some complex structure:

Tp (M) = Hp (M)⊕ Xp (M) ,

where Hp (M) is the complex part and Xp (M) is the real part.

Roughly,

Definition

Let M be a smooth manifold. M ⊆ Cn is a CR manifold if and only if
dimHp (M) is independent of p.

Example: any hypersurface in Cn, like S2n−1 ⊆ Cn ' R2n.

Example: any complex manifold.

Every CR manifold comes with a Kohn Laplacian (CR version of
standard Laplacian).
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Dearborn REU 2020

Goal: Analog of Weyl’s law for the Kohn Laplacian (or complex
Laplacian) on spheres S2n−1,

�b : L2
(
S2n−1

)
→ L2

(
S2n−1

)
.

Tool 1 (Folland): Explicit spectral decomposition for L2
(
S2n−1

)
(very computable).

Tool 2: Karamata’s Tauberian theorem.

Theorem (Karamata)

Let λj be a sequence of nonnegative numbers such that
∑

e−λj t converges
for all t > 0. Define N (λ) = # {j : λj ≤ λ}. For all n > 0 and α ∈ R, the
following are equivalent:

(1) limt→0+ tn
∑∞

j=1 e
−λj t = α;

(2) limλ→∞
N(λ)
λn = α

Γ(n+1) .
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Dearborn REU 2020 Result

Main result:

Theorem (BGS+2021)

Let N(λ) be the eigenvalue counting function (with multiplicity) for �b on
L2
(
S2n−1

)
. Then,

lim
n→∞

N (λ)

λn
= vol

(
S2n−1

) n − 1

n (2π)n Γ (n + 1)

ˆ ∞
−∞

( x

sinh x

)n
e−(n−2)x dx .

Compared to Weyl’s law for standard Laplacian on S2n−1,

lim
n→∞

N (λ)

λn−
1
2

=
vol
(
S2n−1

)
22n−1πn−

1
2 Γ
(
n + 1

2

) .
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The Heisenberg group

Another model CR manifold:

Definition

The d-dimensional Heisenberg group, Hd ⊆ Cd+1, is the set Cd ×R along
with the group law defined by

(z , t) ·
(
z ′, t ′

)
=
(
z + z ′, t + t ′ + 2 Im

〈
z , z ′

〉)
,

where z , z ′ ∈ Cd ; t, t ′ ∈ R; and 〈z , z ′〉 = z1z
′
1 + · · ·+ zdz

′
d .

Stanton-Tartakoff: “Because of the group structure and its
relationship to the Levi metric, analysis on the Heisenberg group is
simpler than on other strongly pseudoconvex CR manifolds.”
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Weyl’s law on Hd?

For α ∈ R define,

Lα = −1

2

d∑
j=1

(
ZjZ j + Z jZj

)
+ iαT ,

where

Z j =
∂

∂z j
− izj

∂

∂t
and T =

∂

∂t
.

Understanding �b comes down to understanding Lα, −d ≤ α ≤ d .

Every positive real number is an eigenvalue of Lα on L2 (Hd).
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Weyl’s law on compact quotients of Hd

M = Γ \Hd where Γ is a subgroup of Hd yielding a reasonable
compact manifold.

Tool 1.1 (Folland): The joint spectrum of L0 and i−1T on L2 (M) is{(
π |n|
2c

(d + 2j) ,
πn

2c

)
: j ∈ Z≥0, n ∈ Z \ {0}

}
∪
{(π

2
|ξ|2 , 0

)
: ξ ∈ Λ′

}
.

Multiplicity of
(
π|n|
2c (d + 2j) , πn2c

)
is

|n|d L
(
j + d − 1

d − 1

)
.

Λ ⊆ Cd is a lattice and c , L are constants dependent on Γ.

Tool 1.2 (Folland): The spectrum of Lα on L2 (M) is{
π |n|
2c

(d + 2j − α sgn n) : j ∈ Z≥0, n ∈ Z \ {0}
}

︸ ︷︷ ︸
type (a)

∪
{π

2
|ξ|2 : ξ ∈ Λ′

}
︸ ︷︷ ︸

type (b)

.
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Weyl’s law on compact quotients of Hd (cont)

Previous results for L0:

Using heat kernel asymptotics, Taylor obtained Weyl’s law for L0

(1986).

Taylor used Karamata’s Tauberian theorem, but made no reference to
the explicit spectrum.

Using a careful analysis of the asymptotics of binomial coefficients,
Strichartz obtained Weyl’s law for L0 (2015).

Strichartz used the explicit spectrum, but did not use Karamata’s
Tauberian theorem.
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Weyl’s law on compact quotients of Hd (cont)

Decompose the eigenvalue counting function N (λ) into two parts:
N (λ) = Na (λ) + Nb (λ).

We expect Na (λ) ∈ O
(
λd+1

)
.

By Weyl’s law for flat tori: Nb (λ) ∈ O
(
λd
)
.

Tool 2:

Theorem (Karamata)

Let λj be a sequence of nonnegative numbers such that
∑

e−λj t converges
for all t > 0. Define N (λ) = # {j : λj ≤ λ}. For all n > 0 and α ∈ R, the
following are equivalent:

(1) limt→0+ tn
∑∞

j=1 e
−λj t = α;

(2) limλ→∞
N(λ)
λn = α

Γ(n+1) .
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Analysis of Na (λ)

Goal: as t → 0+, analyze

td+1G (t) = td+1
∞∑
i=1

e−λi t

= td+1
∑

n∈Z\{0}
j∈Z≥0

|n|d L
(
j + d − 1

d − 1

)
e−t

π|n|
2c

(d+2j−α sgn n).

Main idea (BGS+2021): use the limit t → 0+ to convert the right
Riemann sum td+1G (t) into an integral.
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Analysis of Na (λ) (cont.)

For α < 0, n > 0,

td+1
∞∑
n=1

∞∑
j=0

ndL

(
j + d − 1

d − 1

)
e−t

πn
2c

(d+2j−α)
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Analysis of Na (λ) (cont.)

For α < 0, n > 0,

td+1
∞∑
n=1

∞∑
j=0

ndL

(
j + d − 1

d − 1

)
e−t

πn
2c

(d+2j−α)

= td+1
∞∑
n=1

Lnde−t
πn
2c

(d−α)
∞∑
j=0

(
j + d − 1

d − 1

)
e−t

πn
c
j
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Analysis of Na (λ) (cont.)

For α < 0, n > 0,

td+1
∞∑
n=1

∞∑
j=0

ndL

(
j + d − 1

d − 1

)
e−t

πn
2c

(d+2j−α)

= td+1
∞∑
n=1

Lnde−t
πn
2c

(d−α)
∞∑
j=0

(
j + d − 1

d − 1

)
e−t

πn
c
j

= td+1
∞∑
n=1

Lnd
e−t

πn
2c

(d−α)(
1− e−t

πn
c

)
d
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Analysis of Na (λ) (cont.)

For α < 0, n > 0,

td+1
∞∑
n=1

∞∑
j=0

ndL

(
j + d − 1

d − 1

)
e−t

πn
2c

(d+2j−α)

= td+1
∞∑
n=1

Lnde−t
πn
2c

(d−α)
∞∑
j=0

(
j + d − 1

d − 1

)
e−t

πn
c
j

= td+1
∞∑
n=1

Lnd
e−t

πn
2c

(d−α)(
1− e−t

πn
c

)
d

= L
∞∑
n=1

f (tn) · t where f (x) = xd
e−

π
2c

(d−α)x(
1− e−

π
c
x
)

d
.

For k ∈ N, [t (k − 1) , tk], and ∆ = tk − t (k − 1) = t.
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Weyl’s law for Lα

Theorem (FKZ2021)

Let N(λ) be the eigenvalue counting function for Lα on L2 (M) for
−d ≤ α ≤ d. Then for −d < α < d,

lim
λ→∞

N (λ)

λd+1
= vol (M)

2

πd+1Γ (d + 2)

ˆ ∞
−∞

( x

sinh x

)d
e−αx dx

and for α = ±d,

lim
λ→∞

N (λ)

λd+1
= vol (M)

2

πd+1Γ (d + 2)

d

d + 1

ˆ ∞
−∞

( x

sinh x

)d+1
e−(d−1)x dx .
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Weyl’s law for �b

Corollary (FKZ2021)

Fix d ≥ 2. Let N(λ) be the eigenvalue counting function for �b on M
acting on (p, q)-forms, where 0 ≤ p < d + 1, 0 < q < d. We have that

lim
λ→∞

N (λ)

λd+1
= vol (M)

(
d

p

)(
d

q

)
2

πd+1Γ (d + 2)

ˆ ∞
−∞

( x

sinh x

)d
e−(d−2q)x dx .
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Things to think about

Hypersurface case: Weyl’s law for the Kohn Laplacian on functions.

Non-hypersurface case: Weyl’s law the Kohn Laplacian on both
functions and forms.
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