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Facts, notation, and some motivation

The unit disk and upper half-plane in C are denoted by D and H respectively.

Let U be an open set in C. The (holomorphic) automorphisms of U are denoted by A (U). One can show
that,

A (D) =

{
eiθ

z − α
1− αz

: θ ∈ R, α ∈ D
}
.

We say that a property or function on U is a conformal invariant if it is preserved under composition with
elements in A (U).

Let X be a set and (Y, d) a metric space. One can give X a pseudometric structure via the following:
given any f : X → Y , define δ : X ×X → R by the rule

δ (x1, x2) = d (f (x1) , f (x2)) .

This essentially copies the metric structure of Y onto X, except possibly definiteness. Definiteness is pre-
served when f is injective, in which case the structure is copied exactly. We say that δ is the pullback of the
metric d under f .

Similar to above, we can consider pullbacks of Riemannian metrics. Fix M to be a smooth manifold
and (N, g) a Riemannian manifold. If F : M → N is smooth, we can give X a Riemannian pseudometric
structure by defining F ∗g : C∞ (TM)⊗ C∞ (TM)→ C∞ (M) as

(F ∗g) (v, w) (p) = g ((dFp (v) , dFp (w))) (F (p)) .

Similar to the case for metric spaces, we copy the Riemmanian geometry of N onto M , except possibly
definiteness. Definiteness is preserved if and only if F is a smooth immersion. We say that F ∗g is the
pullback of the metric g under F .

Page 2



The Hyperbolic Metric in Complex Analysis. August 24 - present Fall 2019

The hyperbolic metric on D
Let δ : D× D→ R be defined by the rule,

δ (z, w) :=

∣∣∣∣ z − w1− wz

∣∣∣∣ .
We refer to δ as the Ahlfors metric.

Theorem 1. The Ahlfors metric is a conformal invariant. That is, for any S ∈ A (D),

δ (S (z) , S (w)) = δ (z, w) .

This fact follows by expanding the left-hand side in terms of z and w. Moreover, it follows immediately
that δ (z, w) < 1. Alternatively, one can use the identity,

1− δ (z, w)
2

=

(
1− |z|2

)(
1− |w|2

)
|1− wz|

.

This identity will be used shortly.

Example 2. Disks in the Ahlfors metric.

Fix w = a + ib ∈ D. It follows that the Ahlfors-ball centered at w is defined by {z ∈ C : δ (z, w) < R}.
This is equivalent to {

z ∈ C :

∣∣∣∣∣z − w 1−R2

1−R2 |w|2

∣∣∣∣∣ < R
1− |w|2

1−R2 |w|2

}
.

That is, Ahlfors-balls are identical to standard Euclidean balls in the disk with an offset center. Note
that the Ahlfors center, Euclidean center and the origin are colinear, and the Euclidean center is closer to

the origin due to the 1−R2

1−R2|w|2 factor. Moreover, we have that D under the Ahlfors metric is topologically

equivalent to D under the Euclidean metric.

The Ahlfors metric is a metric in the analytical sense, which will be shown later. However, this tells us
this is not the metric we will want to equip D with, as we require a metric in the geometric sense.

If we take w → z, we have that
|dS (z)|

1− |S (z)|2
=

|dz|
1− |z|2

.

Thus, the Riemannian metric g : C∞ (TD)⊗ C∞ (TD)→ C∞ (D) defined by the rule,

g (X,Y ) (p) = 4
〈Xp, Yp〉(
1− |p|2

)2

is a conformal invariant. That is, if S ∈ A (D) is defined by S (z) = eiθ z−α1−αz , we have that

g
(

(DS)pX, (DS)p Y
)

(S (p)) =
4(

1− |S (p)|2
)2

〈
eiθ

1− |α|2

(1− αz)2Xp, e
iθ 1− |α|2

(1− αz)2Yp

〉

= 4

 |1− αp|2(
1− |p|2

)(
1− |α|2

)
2

·

(
1− |α|2

|1− αz|2

)2

〈Xp, Yp〉

= g (X,Y ) (p) .
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So, the element of length for g,

ds =
2 |dz|

1− |z|2

is also a conformal invariant. We will refer to this element of length on D as the hyperbolic or Poincaré
metric. When equipping D with the hyperbolic metric, we call it the Poincaré disk. Moreover the hyperbolic
metric will be denoted as, λ |dz| where

λ (z) :=
2

1− |z|2
.

It follows that the hyperbolic length of rectifiable arcs,

L (γ) =

�
γ

ds =

�
γ

2 |dz|
1− |z|2

is conformally invariant, as

L (S (γ)) =

�
S(γ)

2 |dz|
1− |z|2

=

�
γ

2 |dS (z)|
1− |S (z)|2

=

�
γ

2 |dz|
1− |z|2

= L (γ) .

We equip D with the hyperbolic geometry, induced by the hyperbolic metric. We can then induce a
metric d in the analysis sense, called the hyperbolic distance by

d (z, w) := inf
γ
L (γ) ,

where the infimum is taken over all continuously differentiable curves joining z to w in D.

Theorem 3. The hyperbolic distance is a conformal invariant.

Proof. Recall that L is a conformal invaraint. This implies,

{L (γ) : γ connects z and w} = {L (S (γ)) : γ connects S (z) and S (w)} ⊆ {L (γ) : γ connects S (z) and S (w)} .

So, d (S (z) , S (w)) ≤ d (z, w). Since S−1 ∈ A (D), by the same line of reasoning as above, d
(
S−1 (z) , S−1 (w)

)
≤

d (z, w), which implies d (z, w) ≤ d (S (z) , S (w)). �

Since the hyperbolic disk has a way of measuring distances between two points, it is a natural to ask
what the geodesics are. Computationally, it is easier to look at H.

Recall that H and D are conformally equivalent via f : H→ D defined by the rule

f (z) =
z − i
z + i

.

If we equip H with the metric that has element of length, ds = |dz| /y, then f is an isometry1. So it suffices
to compute geodesics in H. We start by looking at the simplest case: geodesics from i to ir with r > 1.

Theorem 4. Fix r ∈ (1,∞). Then the geodesic from i to r is a Euclidean straight line.

Proof. Let γ (t) = i (1− t) + irt for t ∈ [0, 1]. Then,

d (i, ir) ≤ L (γ) =

� 1

0

√
(−1 + r)

2

1− t+ rt
dt =

� r

1

1

t
dt = log r.

Now fix µ : [0, 1]→ H continuously differentiable function connecting i and r with real part x and imaginary
part y. It follows that,

L (µ) =

� 1

0

√
x′ (t)

2
+ y′ (t)

2

y (t)
dt ≥

� 1

0

|y′ (t)|
y (t)

dt ≥
� 1

0

y′ (t)

y (t)
= log y (1)− log y (0) = log r.

Note that the first equality holds above if and only if x′ (t) = 0 everywhere as x′ is continuous, and similarly
the second equality holds if and only if y′ (t) ≥ 0 everywhere. So, the shortest path between i and ir is γ. �

1This definition can be seen as natural, after looking at the pullback of f under the hyperbolic metric.

Page 4



The Hyperbolic Metric in Complex Analysis. August 24 - present Fall 2019

Note that A (H) =
{
az+b
cz+d : a, b, c, d ∈ R, ad− bc = 1

}
. Moreover, the hyperbolic metric for the half-

plane is conformally invariant under A (H), and therefore sends geodesics to geodesics. Note that the line
connecting i and ir forms a right angle with the real axis. Since Mobiüs transforms are conformal, and send
circles and lines to circles and lines, we have that the geodesics of H are segments of straight lines or arcs of
circles that intersect the real axis at a right angle.

Under f , we see that the real axis and a point at infinity is sent to the boundary of D and 1. Since f itself
is a Mobiüs transform, the geodesics of D must be radial lines, cutting the boundary at right angles, and
orthogonal circles to the boundary. Specifically, if z and w are colinear with the origin, then the geodesic
connecting them is a Euclidean straight line. If not, then they are connected by an arc of a circle.

Example 5. Horocycles A horocycle in hyperbolic geometry is a curve where every geodesic that intersects
it tranversally all converge asymptotically in the same direction. Examples of horocycles in the Poincaré
disk are Euclidean circles contained in D that are tangent to any boundary point. Explicitly, for fixed θ ∈ R
with |θ| = 1, and R > 0, {

z ∈ D :
|1− z|2

1− |z|2
= R

}
is a horocycle. As a Euclidean circle it is given by the equation,(

x− 1

R+ 1

)2

+ y2 =
R2

(R+ 1)
2 .

We will often abuse language and say the interior of the horocycle is a horocycle. In this case, these horocycles
are hyperbolic disks that are in some sense “centered at infinity.” This centering at infinity will be justified
in the section of Julia’s lemma.

Example 6. The distance from 0 to any z ∈ D is 2 arctanh (|z|).

Proof. Let γ = zt for t ∈ [0, 1]. It follows that,

L (γ) =

� 1

0

|z|
1− |z|2 t2

dt = log

(
1 + |z|
1− |z|

)
= 2 arctanh (|z|) .

�

Example 7. For any z, w ∈ D, we have that d (z, w) = 2 arctanh (δ (z, w)).

Proof. Consider T (ζ) = ζ−w
1−wζ ∈ A (D). Then,

d (z, w) = d (T (z) , T (w)) = d (T (z) , 0) = 2 arctanh (|T (z)|) = 2 arctanh (δ (z, w)) .

�

This fact implies that the topology induced by the hyperbolic distance is equivalent to that of the Ahlfors
metric, and therefore is equivalent to the Euclidean topology

Theorem 8. The Ahlfors metric is a metric (in the analysis sense).

Proof. Note that if d is a metric, and g : [0,∞)→ [0,∞) is injective, and concave, then g ◦ d is a metric. �
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The Schwarz-Pick theorem

Recall the Schwarz lemma,

Theorem 9. Let f : D → C be holomorphic. If f (0) = 0 and |f (z)| < 1 for all z ∈ D, then |f (z)| ≤ |z|
and |f ′ (0)| ≤ 1. Moreover, if there exists a non-zero z0 ∈ D such that |f (z0)| = |z0|, or |f ′ (0)| = 1, then
f (z) = eiθz where θ is real.

One needs not require a fixed point, and with this slight generalization, the Schwarz lemma takes on an
invariant form: the Schwarz-Pick theorem.

Theorem 10. Let f : D → D be holomorphic. Then f reduces or preserves distance with respect to the
Ahlfors metric and hyperbolic lengths of arcs. That is,∣∣∣∣∣ f (z)− f (w)

1− f (w)f (z)

∣∣∣∣∣ ≤
∣∣∣∣ z − w1− wz

∣∣∣∣ and
|f ′ (z)|

1− |f (z)|2
≤ 1

1− |z|2
.

Moreover, the two inequalities are equivalent, and if there exists z0 ∈ D such that equality holds in either
inequality, then f ∈ A (D).

Proof. We first show equivalence. The first inequality implies the second via taking w → z. To see the
converse, consider any z, w ∈ D and γ a path connecting these two points. It follows that L (f ◦ γ) ≤ L (γ).
This implies d (f (z) , f (w)) ≤ d (z, w). Since tanh is increasing, it follows that δ (f (z) , f (w)) ≤ δ (z, w).

Fix w ∈ D. Let gw, hw : D→ D be defined by the rules,

gw (z) =
z − f (w)

1− f (w)z
and hw (z) =

z − w
wz − 1

.

Since gw ◦ f ◦ hw has fixed point 0, by the Schwarz lemma,

|gw (f (hw (z)))| ≤ |z| .

Then since hw = h−1
w ,

|gw (f (z))| ≤
∣∣h−1
w (z)

∣∣ .
That is, δ (f (z) , f (w)) ≤ δ (z, w).

Now suppose there exists α, β ∈ D such that δ (f (α) , f (β)) = δ (α, β). It follows that

|gβ (f (hβ (α)))| = |α| .

So, gβ ◦ f ◦ hβ is a rotation. Since gβ , hβ ∈ A (D), it follows that f ∈ A (D). �

Consider a hyperbolic disk, B = {z ∈ D : |(z − w) / (1− wz)| < r} for some fixed w ∈ D and r > 0.
For f : D → D holomorphic, geometrically, the Schwarz-Pick theorem says that f (B) is contained in the
hyperbolic disk of radius r centered at f (w).

The Schwarz-Pick theorem characterizes the isometry group of D as A (D). Moreover, our objects of most
importance: holomorphic functions, are all contractions with respect to the hyperbolic disk, which is untrue
in Euclidean geometry. This supports the viewpoint that the natural and “correct” geometry for complex
analysis to take place is within hyperbolic geometry.

Example 11. If f : D→ D is holomorphic, then |f ′ (0)| ≤ 1. Moreover, |f ′ (0)| = 1 if and only if f (z) = eiθz
where θ is real.

Proof. By Schwarz-Pick, |f ′ (0)| ≤ 1− |f (0)|2 ≤ 1. If |f ′ (0)| = 1, then f (0) = 0. �
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Example 12. Schwarz-Pick theorem for the half-plane model.

If f : H→ H is holomorphic, then for all z, w ∈ H,∣∣∣∣∣f (z)− f (w)

f (z)− f (w)

∣∣∣∣∣ ≤
∣∣∣∣z − wz − w

∣∣∣∣ .
Proof. Consider T : H→ D defined by the rule,

T (z) :=
z − i
z + i

.

It follows that g := T ◦ f ◦ T−1 is an endomorphism on D. By Schwarz-Pick,

δ (g (z) , g (w)) ≤ δ (z, w) .

This implies,
δ (T (f (z)) , T (f (w))) ≤ δ (T (z) , T (w)) .

It follows that,

δ (T (z) , T (w)) =

∣∣∣∣∣∣∣
z−i
z+i −

w−i
w+i

1−
(
w−i
w+i

)
· z−iz+i

∣∣∣∣∣∣∣
=

∣∣∣∣∣ (w + i) (w + i) (z − i)− (w − i) (w + i) (z + i)

(w + i) (w + i) (z + i)− (w + i) (w − i) (z − i)

∣∣∣∣∣
=

∣∣∣∣z − wz − w

∣∣∣∣ .
The computation for the left-hand side is identical. �
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Boundary behavior

We give two applications of Schwarz-Pick to describe the behavior of holomorphic functions on the boundary:
Julia’s lemma, and Löwner’s lemma.

Julia’s lemma

Recall that the Schwarz-Pick theorem says that the image of a hyperbolic disk of center w and radius r
under any f ∈ O (D,D) is contained in the hyperbolic disk centered at f (w) and radius r. What can be
said about the boundary behavior of f? Does the same phenomenon occur for “disks centered at infinity?”
That is, what can we say about the image of horocycles under f? For simplicity, we consider the behavior
at 1 ∈ ∂D.

Let {zn} ⊆ D be a sequence that converges to 1, and {Rn} ⊆ R>0 so that

1− |zn|
1−Rn

→ k 6= 0,∞.

Note that this says {Rn} converges to 1, but does not converge faster than |zn|. Let Kn be the hyperbolic
disks of center zn and radius Rn.

Theorem 13. The Kn tend to the horocycle K∞ defined by,{
z ∈ D :

|1− z|2

1− |z|2
< k

}
.

The convergence Kn → K∞ means that if z ∈ Kn for infinitely many n, then z ∈ K∞, the closure of K∞.
Moreover, if z ∈ K∞, then z ∈ Kn for all sufficiently large n.

Proof. By definition, z ∈ Kn if and only if δ (z, zn) < Rn. That is, if and only if

1−R2
n < 1− δ (z, zn)

2
=

(
1− |zn|2

)(
1− |z|2

)
|1− znz|2

.

Thus, z ∈ Kn if and only if
|1− znz|2

1− |z|2
<

1− |zn|2

1−R2
n

.

If z ∈ Kn for infinitely many n, by passing to a subsequence, and taking the limit, we have that z ∈ K∞.
Conversely, if z ∈ K∞, then both

lim
n→∞

|1− znz|2

1− |z|2
=
|1− z|2

1− |z|2
< k.

Then since,

lim
n→∞

1− |zn|2

1−R2
n

= k,

it follows that for sufficiently large n, z ∈ Kn. �

This justifies the intuition that horocycles are hyperbolic disks centered at infinity. We now state Julia’s
lemma.

Theorem 14 (Julia’s lemma). Fix k > 0, and f ∈ O (D,D). If there exists a sequence {zn} ⊆ D so that
zn → 1, f (zn)→ 1 and

1− |f (zn)|
1− |zn|

→ α 6=∞,

then
|1− z|2

1− |z|2
≤ k implies

|1− f (z)|2

1− |f (z)|2
≤ αk.

That is, if z ∈ K∞, then f (K∞) ⊆ K ′∞ where K ′∞ is the horocycle centered at 1 of radius αk.
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Proof. Fix N sufficiently large so that 1−|zn| < k for all n ≥ N . Choose Rn so that (1− |zn|) / (1−Rn) = k
for n ≥ N . Note that this implies 0 < Rn < 1. Let Kn = K (zn, Rn). By the Schwarz-Pick theorem,
f (Kn) ⊆ K ′n where K ′n is the hyperbolic disk of radius Rn and center f (zn). By the previous theorem, the
Kn converge to the horocycle K∞ of radius k. It follows that,

1− |f (zn)|
1−Rn

=
1− |f (zn)|

1− |zn|
· 1− |zn|

1−Rn
→ αk.

Now fix z ∈ K∞. By the previous theorem, z ∈ Kn for infinitely many n. Thus, f (z) ∈ K ′n for infinitely

many n, which implies f (z) ∈ K ′∞. �

Remark 15. The assumption that f (zn)→ 1 is not necessary. Neither is the assumption that |f (zn)| → 1.
The reason it is assumed in the theorem is to simplify the computations as we only computed horocycles
centered at 1. Moreover, this α-distortion term can be minimized by taking the limit infimum as z → 1 of
(1− |f (z)|) / (1− |z|).

Since k was arbitrary, we obtain this boundary form of the Schwarz-Pick theorem.

Corollary 16. For all f ∈ O (D,D), satisfying the conditions in Julia’s lemma, and z ∈ D,

|1− f (z)|2

1− |f (z)|2
≤ α |1− z|

2

1− |z|2
.

Equivalently,

β = sup

(
|1− f (z)|2

1− |f (z)|2
· 1− |z|2

|1− z|2

)
≤ α.

Note that β is nonzero as f is not identically 1, and if β = ∞, then there is no finite α for which the
difference quotient (1− |f (zn)|) / (1− |zn|) can limit to.
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Angular derivatives

Julia’s lemma allows us to study the derivative of f ∈ O (D,D) at the boundary. It makes sense to talk about
the quotient (1− f (z)) / (1− z), and f ′ (z) as z → 1. We look to answer the following questions: when do
these limit exists, and if they exist, when are they equal. Let us first consider a radial limit.

Theorem 17. Fix f ∈ O (D,D). For x ∈ D ∩ R,

lim
x→1

1− f (x)

1− x
= β

where

β = sup

(
|1− f (z)|2

1− |f (z)|2
· 1− |z|2

|1− z|2

)
.

Proof. First fix β <∞. Let {xn} be a real sequence converging to 1. Since,

1− |f (xn)|2

1−
∣∣∣f (xn)

2
∣∣∣ · 1− |xn|2

|1− xn|2
≤ β,

we have that

|1− f (xn)|2 ≤ |1− f (xn)|2

1− |f (xn)|2
≤ β (1− xn)

2

(1− xn) (1 + xn)
= β

1− xn
1 + xn

.

Thus, f (xn)→ 1 automatically. Similarly,

β ≥ |1− f (xn)|2

1− |f (xn)|2
· 1− x2

n

|1− xn|2
≥ |1− f (xn)|2

1− |f (xn)|2
· 1 + xn

1− xn
≥ |1− f (xn)|

1 + |f (xn)|
· 1 + xn

1− xn
≥ 1− |f (xn)|

1− xn
· 1 + xn

1 + |f (xn)|
.

Taking the limit, we see that

lim
n→∞

1− |f (xn)|
1− xn

≤ β.

Since xn was arbitrary, it follows that the distortion factor, α along the x-axis is exactly β. Moreover, by
the above chain of inequalities,

lim
x→1

1− |f (x)|
1− x

= lim
x→1

|1− f (x)|
1− x

= β.

Note that since β 6= 0,∞, it follows that

lim
x→1

|1− f (x)|
1− |f (x)|

= 1.

In particular, for all M > 1, there exists a neighborhood of 1 so that for x in that neighborhood,

|1− f (x)|
1− |f (x)|

< M.

This implies for x close to 1, the argument of f (x) is close to 0 (Stolz angle). Since 1− z is a rotation about
1/2, it follows that arg (1− f (x))→ 0 as x→ 1. This implies,

lim
x→1

1− f (x)

1− x
= lim
x→1

∣∣∣∣1− f (x)

1− x

∣∣∣∣ = β.

For the case that β =∞, note that

lim
x→1

1− |f (x)|
1− x

=∞.

Monotonicity implies,

lim
x→1

1− |f (x)|
1− x

= lim
x→1

|1− f (x)|
1− x

=∞,

and therefore limx→1 (1− f (x)) / (1− x) =∞. �
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Thus, the difference quotient (1− f (z)) / (1− z) always has a radial limit. We can do better: if z → 1
so that there exists M > 1 with |1− z| ≤M (1− |z|) (Stolz angle), then the difference quotient limit exists.
This condition means that z approaches 1 within an angle less than π, and the limit is referred to as an
angular limit.

Theorem 18. Fix f ∈ O (D,D). The quotient,

1− f (z)

1− z

always has an angular limit as z → 1. Explicitly, the limit is

β = sup

(
|1− f (z)|2

1− |f (z)|2
· 1− |z|2

|1− z|2

)
,

and therefore is either ∞ or a positive real number. If it is finite, f ′ (z) has the same angular limit.

Proof. We first need two computational results. The first: for z 6= 1,

Re
1 + z

1− z
=

1− |z|2

|1− z|2
.

The second: for any non-constant g ∈ O (D) satisfying Re g ≥ 0, there exists F ∈ O (D,D) so that

g =
1 + F

1− F
.

Note in fact that Re g > 0 by the open mapping theorem.

First assume β =∞. For angular approach, this implies,

lim
z→1

1− |f (z)|
1− |z|

=∞.

Since |1− z| ≤M (1− |z|), by the triangle inequality,

lim
z→1

∣∣∣∣1− f (z)

1− z

∣∣∣∣ =∞.

Thus,

lim
z→1

1− f (z)

1− z
= β.

Now assume β <∞. We reduce to the β =∞ case. By the first fact, for all z ∈ D,

0 ≤ βRe
1 + f (z)

1− f (z)
− Re

1 + z

1− z
.

By the second fact, there exists F ∈ O (D,D) so that

β
1 + f (z)

1− f (z)
− 1 + z

1− z
=

1 + F (z)

1− F (z)
.

Let

β′ = sup

(
|1− F (z)|2

1− |F (z)|2
· 1− |z|2

|1− z|2

)
.

If β′ <∞, then

Re
1 + z

1− z
≤ β′Re

1 + F (z)

1− F (z)
= β′

(
βRe

1 + f (z)

1− f (z)
− Re

1 + z

1− z

)
.
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That is, (
1 +

1

β′

)
Re

1 + z

1− z
≤ βRe

1 + f (z)

1− f (z)
.

This contradicts the definition of β, and therefore β′ =∞. In particular, for angular approach,

lim
z→1

1− z
1− F (z)

= 0.

Since

β
1 + f (z)

1− f (z)
(1− z)− (1 + z) =

1 + F (z)

1− F (z)
(1− z) ,

in the angular limit,

lim
z→1

1− z
1− f (z)

=
1

β
.

We now show that finite β, in the angular limit, f ′ (z)→ β. By differentiation,

βf ′ (z) (1− f (z))
−2 − (1− z)−2

= F ′ (z) (1− F (z))
−2
.

By the Schwarz-Pick theorem, and the fact that |1− z| ≤M (1− |z|),∣∣∣∣∣βf ′ (z) (1− z)2

(1− f (z))
2 − 1

∣∣∣∣∣ = |F ′ (z)|
∣∣∣∣ 1− z
1− F (z)

∣∣∣∣2
≤
∣∣∣∣ 1− z
1− F (z)

∣∣∣∣2 1− |F (z)|2

1− |z|2

≤M2 (1− |z|)2

|1− F (z)|2
1− |F (z)|2

1− |z|2

≤M2 1− |z|
|1− F (z)|2

(
1− |F (z)|2

)
≤ 2M2 1− |z|

1− |F (z)|
.

It follows that f ′ (z)→ β. �

When β 6=∞, we call it the angular derivative for f at 1. In this case, we have that f (z)→ 1 as z → 1
in an angle. So, β is the angular limit of the quotient, (f (z)− f (1)) / (z − 1), which is equal to the angular
limit of f ′ (z). Also, recalling that β > 0, we note that provided everything stays non-tangent to 1 in the
disk, f is conformal at 1.

Now note that 1 ∈ ∂D was not special. Given a function f1 (z)→ eiδ as z → eiγ , we can consider

f (z) = e−iδf1

(
e−iγz

)
,

which would transfer to the setting given.
We can also consider angular derivatives in the half-plane, which is again, computationally more conve-

nient than the disk.

Corollary 19. Suppose f = u+ iv maps the right half-plane into itself. It follows that,

lim
z→∞

f (z)

z
= lim
z→∞

u (z)

x
= c = inf

u (z)

x

so long as our limits are restricted to |arg z| ≤ π/2− ε for some fixed ε > 0.
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Proof. We convert the map of half-planes to that of disks. Consider g : D→ D defined by the rule,

g (w) =
f (z)− 1

f (z) + 1

where z is in the right half-plane so that (z − 1) / (z + 1) = w. Note that the region given by the Stolz angle,
|1− z| ≤M (1− |z|) corresponds exactly to the region given by |arg z| ≤ π/2− ε for some fixed ε dependent
on M .

Define,

β = sup

(
|1− g (w)|2

1− |g (w)|2
· 1− |w|2

|1− w|2

)
.

Now recall the first computational result from before. It follows that,

β = sup

((
Re

1 + g (w)

1− g (w)

)−1

Re
1 + w

1− w

)
= sup

Re z

u (z)
.

Now define c = 1
β = inf u (z) /x. Since β > 0, we have that c ≥ 0. It follows that in the angular limit for w,

c = lim
w→1

1− w
1− g (w)

= lim
z→∞

1− z−1
z+1

1− f(z)−1
f(z)+1

= lim
z→∞

1 + f (z)

1 + z
.

This implies f/z → c as z → ∞ within |arg z| ≤ π/2 − ε. For the last claimed equality we see that in an
angle,

lim
z→∞

u (z)

x
= lim
w→1

1− |g (w)|2

|1− g (w)|2
· |1− w|

2

1− |w|2
= lim
w→1

1

β2

1− |g (w)|2

1− |w|2
= lim
w→1

1

β2

1− |g (w)|
1− |w|

1 + |g (w)|
1 + |w|

= c.

�
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Löwner’s lemma

What can be said about how f ∈ O (D,D) acts directly on the boundary, assuming such an action makes
sense? Suppose we have the property that |f (z)| → 1 as z approaches an open arc γ ⊆ ∂D. By the reflection
principle, f extends analytically to γ. Moreover, f ′ (ζ) 6= 0 for ζ ∈ γ as |f (z)| is increasing as z → ζ.
Moreover, this implies as arg ζ increases, so does arg f (ζ) as f ′ (ζ) 6= 0 and holomorphic functions preserve
orientation.

We now state Löwner’s lemma, which will follow directly from angular derivatives. Intuitively, it states
that if we contract the unit disk while maintaining a self-map on part of the boundary, then we must have
stretched the boundary.

Theorem 20. Fix f ∈ O (D,D) and γ ⊆ ∂D an open arc. If |f (z)| → 1 as z → γ, and f (0) = 0, then the
arc length of γ is at most the arc length of f (γ).

Proof. Define F : D→ D by the rule,

F (z) =
f (ζz)

f (ζ)
,

for some fixed ζ ∈ γ. Note that F is well-defined as |f (ζ)| = 1. We then see that the angular derivative at
1 yields,

lim
r→1

1− F (r)

1− r
= F ′ (1) =

ζf ′ (ζ)

f (ζ)
.

Since f ′ (ζ) 6= 0 for all ζ ∈ γ, we have that arg f ′ (ζ) = arg f (ζ) /ζ as f is conformal. Thus,

lim
r→1

1− F (r)

1− r
= |f ′ (ζ)| .

Now note that by the triangle inequality and the Schwarz lemma, |1− F (r)| ≥ 1 − |F (r)| ≥ 1 − r. Since
r → 1 angularly, we have that

|f ′ (ζ)| = lim
r→1

∣∣∣∣1− F (r)

1− r

∣∣∣∣ ≥ 1.

Since this holds for all ζ ∈ γ, by integrating over γ, we have that

length (f (γ)) =

�
γ

|f ′ (ζ)| dζ ≥
�
γ

dζ = length (γ) .

�
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Ahlfors’s generalization of Schwarz-Pick

Recall that a Riemannian metric given by ds = ρ |dz| for ρ > 0 is conformal with the Euclidean metric. We
will only look at metrics and similar metric-concepts that are conformal with the Euclidean metric. That is,
all “metrics” will be of the form ρ |dz| for some function ρ, and may be referred to as ρ.

The (Gaussian) curvature of the Riemannian metric ρ at z is

K (ρ) (z) = −∆ log ρ (z)

ρ (z)
2 ,

where ∆ := 4 ∂2

∂z∂z . Note that it necessary to have ρ > 0 and ρ twice differentiable to consider Gaussian
curvature.

Example 21. The curvature of the hyperbolic metric is −1.

Example 22. The curvature of the spherical metric, 2|dz|
1+|z|2 is 1.

Example 23. Let Ω,Ω′ ⊆ C be two regions, and f : Ω→ Ω′ holomorphic. If Ω′ is equipped with a metric
ρ, then

(f∗ρ) (z) = ρ (f (z)) |f ′ (z)| |dz|

is the pullback of ρ under f .

Proof. This follows from the definition of pullback. �

Curvature can tell us a lot about what a Riemannian manifold looks like. For one, positively curved
spaces force geodesics to converge to one another, and negatively curved spaces forces them to spread out.
Spaces of constant curvature can also be classified: if the (sectional) curvature of a complete and connected
Riemannian manifold is constant, then it is isometric to M/G, where M is either Euclidean space(curvature is
zero), or a sphere of radius R (curvature is R > 0), or hyperbolic space of radius R (curvature is R < 0), and
G is a discrete group of isometries of M , isomorphic to π1 (M), that acts freely and properly discontinuously
on M .

Other fun facts include: If the sectional curvature of a complete and connected Riemannian manifold
is bounded above by zero, then the universal covering space of M is diffeomorphic to Rn. If the sectional
curvature is bounded below by a positive constant, then M is compact, and π1 (M) is finite.

Thus, it is an extremely nice property that curvature in our setting is preserved by pullback. Via this,
we can transport hyperbolic geometry on the disk to regions not the disk!

Theorem 24. Curvature is invariant under (holomorphic) pullback. Fix f : Ω→ Ω′ to be holomorphic, and
Ω′ ⊆ C a region equipped with a pseudeometric ρ (w) |w|. If α ∈ Ω is such that f ′ (α) 6= 0, ρ (f (α)) > 0, and
ρ is C2 at f (α), then

K (f∗ρ) (α) = K (ρ) (f (α)) .

Proof. Note that

log (f∗ρ) (z) = log (ρ (f (z)) |f ′ (z)|)

= log ρ (f (z)) +
1

2
log f ′ (z) +

1

2
log f ′ (z).

It follows that,

∂

∂z
log f∗ρ =

ρ′ (f (z)) f ′ (z)

ρ (f (z))
+

1

2

f ′′ (z)

f ′ (z)
=
∂ log ρ

∂w
(f (z)) f ′ (z) +

1

2

f ′′ (z)

f ′ (z)
.
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By the chain rule,

∂

∂z∂z
log f∗ρ = f ′ (z)

∂

∂z

(
∂ log ρ

∂w
(f (z))

)
= f ′ (z)

(
∂ log ρ

∂w∂w
(f (z))

)
∂f

∂z
=
∂ log ρ

∂w∂w
(f (z)) f ′ (z) f ′ (z).

That is, ∆ log f∗ρ = |f ′|2 ∆ log ρ. From this the claim follows shortly. �

We now want to compare the hypebolic metric on D, λ |dz|, with other hypebolic-esque metrics on D,
ρ |dz|.

Theorem 25. If ρ satisfies K (ρ) ≤ −1 everywhere in D, then λ (z) ≥ ρ (z) for all z ∈ D.

Proof. First make the assumption that ρ has an extension to D that is continuous and strictly positive.

From curvature, we know
∆ log λ = λ2 and ∆ log ρ ≥ ρ2.

Thus, ∆ (log λ− log ρ) ≤ λ2 − ρ2. Since ρ has continuous extension to the closed disk, we know that log ρ is
bounded on the closed disk. It follows that log λ− log ρ→∞ as |z| → 1. By compactness, log λ− log ρ as a
mapping into (−∞,∞] attains a minimum z0 ∈ D such that log λ (z0)−log ρ (z0) ∈ R. By the behavior at the

boundary, z0 ∈ D. From calculus, it follows that ∆ (log λ− log ρ) (z0) ≥ 0, and therefore λ (z0)
2 ≥ ρ (z0)

2
.

This implies (log λ− log ρ) (z0) ≥ 0. Since z0 is a minimum, log λ− log ρ ≥ 0 in D and therefore λ ≥ ρ.

To remove the extra assumptions, consider rρ (rz), where 0 < r < 1. Clearly this is the pullback of ρ
under the map z 7→ rz, and therefore it has the same curvature as ρ. We see that rρ (rz) extends continuously
to the closed disk, as we can define the boundary values to be rρ (r). These boundary values are also strictly
positive as both r and ρ (r) are positive. So, λ (z) ≥ rρ (rz) for all z ∈ D. By continuity, it follows that
λ ≥ ρ. �

Thus, the hyperbolic metric is the maximimal negatively curved metric on D. Recall that when we define
curvature, it is necessary that our metric is positive and twice differentiable. In some cases, this is too much
to ask for, and can cause problems in applications. It is Ahlfors’s observation that these regularity conditions
can be avoided similarly to that of subharmonic functions to harmonic functions. Moreover, in this proof
of maximality, the behavior of ρ needs to be controlled only at a single point of minimality. Perhaps then
global regularity can be replaced by local regularity, leading us to the following definition:

Definition 26. A metric ρ |dz| such that ρ ≥ 0 is said to be ultrahyperbolic in a region Ω, if:

� ρ is upper semicontinuous.

� For all z0 ∈ Ω with ρ (z0) > 0, there exists a neighborhood V of z0 and a “supporting metric”
ρ0 ∈ C2 (V ), such that ∆ log ρ0 ≥ ρ2

0 and ρ ≥ ρ0 in V , while ρ (z0) = ρ0 (z0).

Note that in this definition, we must have ρ0 > 0 in V . We can intuitively think of ρ0 as a metric defined
on a small ball centered at z0 that gives V strictly negative curvature. So despite losing regularity, and not
being able to define the curvature for ρ, locally we are able to give Ω some supportive type of hyperbolic
structure. Moreover, ρ is given local positivity due to being bounded below by ρ0, and at z0, is described
exactly by ρ0.

Example 27. Any Riemannian metric that satisfies K (ρ) ≤ −1 everywhere in a region is ultrahyperbolic,
as one can take the supporting metric to be itself.

Theorem 28. If ρ is an ultrahyperbolic metric on D, then λ ≥ ρ everywhere on D.

This theorem states that λ is the maximal ultrahyperbolic metric on D.

Proof. First make the assumption that ρ has an extension to D that is upper semicontinuous.

Note that log ρ is upper semicontinuous as log is increasing and upper semicontinuous. Thus, − log ρ is
lower semicontinuous, and therefore log λ − log ρ is lower semicontinuous. Since ρ as upper semicontinuous
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extension to D, it follows that log λ− log ρ→∞ as |z| → 1. By lower semicontinuity, there exists a minimum
for log λ− log ρ in D, call it z0. Note that ρ (z0) 6= 0, as otherwise z0 is not a minimum. So ρ (z0) > 0, and
therefore there exists a supporting metric ρ0 for ρ at z0. From the definition of supporting metric,

log λ− log ρ0 ≥ log λ− log ρ

locally around z0. So, log λ−log ρ0 has local minimum at z0 as ρ (z0) = ρ0 (z0). This implies ∆ (log λ− log ρ0) (z0) ≥
0, and therefore λ (z0) ≥ ρ0 (z0) = ρ (z0). From this, log λ (z0)− log ρ (z0) ≥ 0. But since z0 was minimum,
we see that log λ (z)− log ρ (z) ≥ 0 for all z ∈ D, and therefore λ ≥ ρ.

To patch the assumption of extension to the boundary, one can consider the same trick as before by
looking at rρ (rz) which is still ultrahyperbolic. �

Example 29. There is no ultrahyperbolic metric for C.

Proof. The hyperbolic metric for a disk of radius R can be computed as,

λR (z) =
2R

R2 − |z|2
.

If ρ is an ultrahyperbolic metric for C, then ρ restricts to an ultrahyperbolic metric for DR and therefore
ρ ≤ λR. Taking R→∞ implies ρ ≡ 0. �

Example 30. The holomorphic pullback of an ultrahyperbolic metric is ultrahyperbolic.

Proof. Clearly ρ (f (z)) |f ′ (z)| is upper semicontinuous as f ′ is continuous.

Fix z0 such that (f∗ρ) (z0) > 0. It follows that ρ (f (z0)) > 0. Thus, there exists a supporting metric for
ρ, denoted by ρf(z0) on some neighborhood V of f (z0). Define g := f

∣∣
f−1(V ) . It follows that g∗ρf(z0) satisfies

negative curvature and bounds f∗ρ from below while being equal at z0. Thus, g∗ρf(z0) is a supporting metric
for f∗ρ at z0. �

We now state Ahlfors’s celebrated generalization of the Schwarz-Pick theorem.

Theorem 31 (Ahlfors’s lemma). Let f ∈ O (D,Ω), where Ω is equipped with an ultrahyperbolic metric ρ.
Then f∗ρ ≤ λ everywhere on D.

Proof. Recall the invariance of ultrahyperbolicity under pullback and the maximality of the hyperbolic
metric. �

Example 32. There is no ultrahyperbolic metric on C \ {0}.

Proof. If ρ is an ultrahyperbolic metric for C \ {0}, then the pullback of ρ by ez is an ultrahyperbolic metric
for C which is a contradiction. �

Example 33. Liouville’s theorem follows immediately from Ahlfors’s lemma.

Proof. If f : C → C is bounded, then for all R > 0, f maps DR into some fixed DM . By Ahlfors’s lemma,
f∗λM ≤ λR. Taking R→∞ implies |f ′| ≡ 0. �

Recall Schwarz-Pick: holomorphic endomorphisms of the hyperbolic disk are contractions. Ahlfors’s
lemma, which can be stated for Riemann surfaces states the following: holomorphic maps from the hyperbolic
disk to negatively curved surfaces are contractions. As an application, we give a proof of Bloch’s theorem.
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Applications of Ahlfors’s lemma

The first major application of Ahlfors’s lemma we present is Ahlfors’s proof of Bloch’s theorem.

Bloch’s theorem

How do holomorphic functions act when given local injectivity?

Definition 34. Fix f ∈ O (D,Ω). We say that a disk Br with radius r in the image of f is simple if
there exists an inverse for f on Br. That is, there is a place where f acts biholomorphically. A disk
centered at w with radius r in the image of f that is simple is denoted by Br (w). We define Bf :=
sup {r : ∃w ∈ Ω, Br (w) is simple}.

Example 35. We can translate the above definition to functions of real variables. For all n ∈ N, consider
fn : (−1, 1)→ R defined by the rule fn (x) = sin (nx) /n. Clearly each fn is analytic and f ′n (0) = 1. Thus,
each fn is locally injective at 0. Moreover, Bfn = 2/n.

The above example tells us the radii of simple disks for real-analytic functions can be arbitrarily small.
What can be said about holomorphic functions from D to C that are locally injective at a point? Are there
functions in this class that have arbitrarily small simple disks? What if we define fn (z) = enz/n? Bloch’s
theorem like other theorems in complex analysis, differ from the real case.

Theorem 36. Let B = {f ∈ O (D) : |f ′ (0)| = 1}, and define B = inf {Bf : f ∈ B}. Then, B > 0 and in
fact, B ≥

√
3/4.

So, any normalized function on the disk that is locally injective at a point has a simple disk in its image
with radius at least

√
3/4. Note that this disk need not be centered at 0 by considering example 32 except

with complex entries.

Proof. Fix f ∈ B, and note that Bf > 0 as f is locally injective at 0. Let A be a fixed constant greater

than B
1/2
f . Define R : Wf → R by the rule

R (w) = sup {r : Br (w) is simple} .

We see that if R (w) = 0, then f is not locally injective at w. Thus, w is a point of multiplicity greater than
1. Conversely, if w has multiplicity greater than 1, then f is not locally injective, which implies R (w) = 0.
Define ρ̃ : Wf → R by the rule

ρ̃ (w) =
A

R (w)
1/2

(A2 −R (w))
.

Clearly Bf ≥ R (w), and therefore A > R (w)
1/2

. It follows that ρ̃ |dw| induces a metric structure on Wf .
We can then equip D with a metric structure,

ρ (z) := (f∗ρ̃) (z) =
A |f ′ (z)|

R (f (z))
1/2

(A2 −R (f (z)))
.

The goal is to show that ρ is ultrahyperbolic in order to apply Ahlfors’s lemma.

We first consider the behavior of ρ at branch points. Suppose w0 = f (z0) has multiplicity n > 1. That
is, f ′ (z0) = · · · = f (n−1) (z0) = 0, and f (n) 6= 0. This implies branch points of multiplicity greater than one
are isolated. It follows that there is a neighborhood of z0, V such that R (f (z)) = |f (z)− w0| for all z ∈ V .
So for z ∈ V ,

ρ (z) =
A |f ′ (z)|

|f (z)− f (z0)|1/2 (A2 − |f (z)− f (z0)|)
.

Note that f (z) − f (z0) = (z − z0)
n
g (z) where g is holomorphic and non-vanishing at z0. Moreover,

f ′ (z0) = (z − z0)
n−1

h (z) for h holomorphic and non-vanishing at z0. It follows that,

ρ (z) =
A |z − z0|n−1 |h (z)|

A2 |z − z0|n/2 |g (z)|1/2 − |z − z0|n/2+n |g (z)|1/2+1
=

A |z − z0|n/2−1 |h (z)|
A2 |g (z)|1/2 − |z − z0|n |g (z)|3/2

.
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So for n > 2, ρ is continuous at z0 (thus upper semi-continuous), and ρ (z0) = 0. Therefore we need not look
for a supporting metric at z0.

For n = 2, we see that around a small neighborhood of z0, that ρ is actually regular and in C2, since g
is non-vanishing at z0 and both g and h are holomorphic. So if we can show ∆ρ = ρ2, near z0, then ρ is
ultrahyperbolic at z0 as we can take the supporting metric to be itself. Consider α : D→ D defined by the
rule,

α (z) = A−1 (f (z)− f (z0))
1/2

.

Recall that f (z) − f (z0) = (z − z0)
2
g (z), where g does not vanish at z0. It follows that there is a small

neighborhood, G ⊆ D around z0 where g does not vanish. We can look at α |G , which is now holomorphic.
It follows that α |G ∗ λ = ρ, and therefore ∆ log ρ = ρ2.

Now we must show that ρ is ultrahyperbolic on points where f is locally injective. So fix w0 = f (z0)
with f ′ (z0) 6= 0. Consider the largest simple disk centered at w0,

∆′ (w0) = {w : |w − w0| < R (w0)} .

Let D (z0) be the connected component of the preimage of ∆′ (w0) that contains z0. We claim that there
exists a ∈ ∂D (z0) such that f ′ (a) = 0, or |a| = 1 (see the appendix on Bloch’s theorem for proof). Note
that in the first case, the boundary of ∆′ (w0) contains b = f (a). In the second case, we may assume that f
extends continuously to ∂D by a standard rescaling argument. In either case, b = f (a) is on the boundary
of ∆′ (w0).

Fix z1 ∈ D (z0), and let w1 = f (z1). We claim that R (w1) ≤ |w1 − b|. This is intuitively a contradiction
as b is either a point that fails local injectivity, or a boundary point, and therefore cannot be contained in a
simple disk. For a formal argument, see the appendix on Bloch’s theorem.

We claim that a supporting metric for ρ at z0 is defined to be

ρ0 (z) :=
A |f ′ (z)|

|f (z)− b|1/2 (A2 − |f (z)− b|)
,

for z close to z0. Clearly ρ0 satisfies positivity, and is regular on a small neighborhood of z0. Recalling the
argument for showing ultrahyperbolicity of ρ at points with multiplicity 2, we see that ρ0 has curvature −1.
Since R (f (z0) =) |f (z0)− b|, we have that ρ0 (z0) = ρ (z0). Monotonicity of the metrics comes down to
showing that for z close to z0,

R (f (z))
1/2 (

A2 −R (f (z))
)
≤ |f (z)− b|1/2

(
A2 − |f (z)− b|

)
.

So it suffices to look at when the function: t1/2
(
A2 − t

)
is increasing for 0 ≤ t ≤ R (w0), as we have

equality at t = R (w0), and R (f (z)) ≤ R (w0) for z close to z0. We see that t1/2
(
A2 − t

)
is increasing for

0 ≤ t ≤ A2/3. Thus, if we take A2/3 > Bf ≥ R (w), it follows that ρ0 is a supporting metric for ρ at z0, and
therefore ρ is an ultrahyperbolic metric on D. By Ahlfors’s lemma, for all z ∈ D,

ρ (z) ≤ λ (z) .

By evaluating at z = 0 and our choice of A before,

A ≤ 2R (f (z))
1/2 (

A2 −R (f (z))
)
≤ 2B

1/2
f

(
A2 −Bf

)
.

Letting A tend to (3Bf )
1/2

, we see that Bf ≥
√

3/4. Thus, B ≥
√

3/4. �

Bounds for Poincaré metrics

It is always useful to obtain explicit bounds on functions that cannot be expressed explicitly. In previous
examples we showed that there are no ultrahyperbolic metrics on C or C \ {0}. These are the only two
examples of such domains.
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Theorem 37. In a plane region Ω whose complement contains at least two points, there exists a unique
maximal ultrahyperbolic metric λΩ with constant curvature −1.

Maximality is given in the sense that for any other ultrahyperbolic metric ρ on Ω, we have ρ ≤ λΩ. We
do not prove this theorem. Existence follows from the uniformization theorem, and uniqueness is immediate.
Moreover, we define this maximal ultrahyperbolic metric on Ω to be the Poincaré metric for Ω.

Example 38. Poincaré metrics are preserved by biholomorphisms. That is, if f : Ω → Ω′ is a biholomor-
phism, and λΩ′ is the Poincaré metric for Ω′, then f∗ (λΩ′) is the Poincaré metric for Ω.

Proof. Fix ρ ultrahyperbolic on Ω. It follows that f−1∗ρ ≤ λΩ′ . So, f∗
(
f−1∗ρ

)
≤ f∗λΩ. Note however the

lefthand side is ρ. Thus, f∗λΩ is maximal and has constant curvature −1. �

It is easy to obtain upper bounds for Poincaré metrics.

Theorem 39. If Ω ⊆ Ω′, then λΩ′ ≤ ΛΩ.

Proof. The restriction of an ultrahyperbolic metric is ultrahyperbolic. �

Theorem 40. Let δ (z) be the distance from z ∈ Ω to bΩ. It follows that λΩ (z) ≤ 2/δ (z).

Proof. Note that the disk centered around z of radius δ (z) is contained in Ω. By using the hyperbolic metric
on a disk, and the previous theorem, it follows that λΩ (z) ≤ 2/δ (z). �

Note that the above estimate is the best upper bound for general Ω as we have equality in the case of a
disk.

It is much more difficult to obtain lower bounds.
Since every domain that admits an ultrahyperbolic metric is contained in some Ωa,b = C \ {a, b}, it

suffices to find a lower bound for the Poincaré metric λa,b on Ωa,b. Moreover, since

λa,b (z) = |b− a|−1
λ0,1

(
z − a
b− a

)
,

it suffices to find a lower bound for λ0,1. Optimally, we want this lower bound to be expressed in elementary
terms. To do this, we break up Ω0,1 into simpler pieces. Let

Ω1 = {|z| ≤ 1 : |z| ≤ |z − 1|} ,

and Ω2 the reflection of Ω1 over x = 1/2, and Ω3 the closure of the complement of Ω1∪Ω2. This decomposition
is motivated by the fact that Ω0,1 has automorphisms 1− z and 1/z. Thus, Ω1, Ω2, and Ω3 are fundamental
domains and therefore we only need to consider bounds for λ0,1 in either Ω1, Ω2, or Ω3.

We now look for a stronger upper bound. Note that the Poincaré metric on the punctured disk D \ {0}
is such an upper bound. Since the left half-plane with the map z = ew is a holomorphic universal cover for
the punctured disk, we can compute the Poincaré metric on D \ {0} from the Poincaré metric on the left
half-plane (see Beardon and Minda’s notes). Thus,

|dw|
|Rew|

=
|d log z|
|Re log z|

=
|dz|

|z| |log |z||
=

|dz|
|z| log 1

|z|

is the Poincaré metric on D \ {0}. It follows that,

λ0,1 (z) ≤ 1

|z| log 1
|z|

for all z ∈ D \ {0}.
To state an elementary lower bound on λ0,1 we need to define the following function. Let ζ : C\[1,∞]→ D

be defined by the rule,

ζ (z) =

√
1− z − 1√
1− z + 1

.

Geometrically, this function conformally maps C \ [1,∞] first to the right half-plane, and then into the unit
disk. Moreover, the origins are mapped to each other, and symmetry with respect to the x-axis is preserved.
That is, ζ (z) = ζ (z).
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Theorem 41. For z ∈ Ω1,

λ0,1 (z) ≥
∣∣∣∣ζ ′ (z)ζ (z)

∣∣∣∣ (4− log |ζ (z)|)−1
.

Moreover, as z → 0,

log λ0,1 (z) = − log |z| − log log
1

|z|
+O (1) .

Proof. Clearly D\{0} is biholomorphic to the punctured disk of radius e4. Thus, we can equip this punctured

disk with the metric (|z| (4− log |z|))−1
. Since ζ maps into the punctured disk of radius e4 via the standard

inclusion, by pulling back we see that

ρ0 (z) =

∣∣∣∣ζ ′ (z)ζ (z)

∣∣∣∣ (4− log |ζ (z)|)−1

is an ultrahyperbolic metric on C\ [1,∞] with curvature −1. In particular, we regard it is an ultrahyperbolic
metric on Ω1. To obtain a lower bound for λ0,1 we must show that ρ0 can be extended to an ultrahyperbolic
metric on Ω0,1. This can be done by extending to Ω2 and Ω3 via symmetry. The candidate function
ρ : Ω0,1 → R≥0 is given by the rule,

ρ (z) =


ρ0 (z) z ∈ Ω1

ρ0 (1− z) z ∈ Ω2

|z|−2
ρ0

(
1
z

)
z ∈ Ω3

.

Clearly ρ has constant curvature −1 as for z ∈ Ω1 it is defined by ρ0, and for the other parts of the domain,
the rest of the metric is formed by the pullback.

We now show that ρ is continuous/well-defined. This follows essentially from the fact that 1/z and 1− z
map the boundaries of Ω1, Ω2, and Ω3 to one another. To elaborate, we consider Ω1 ∩ Ω2, Ω1 ∩ Ω3, and
Ω2∩Ω3. If z ∈ Ω1∩Ω2 we need to show ρ (z) makes sense. That is, ρ0 (z) = ρ0 (1− z). Note that z ∈ Ω1∩Ω2

if and only if z = 1/2 + ib for some real b. We see that ρ0 (z) = ρ0 (1− z) if and only if

ρ0

(
1−

(
1

2
+ ib

))
= ρ0

(
1

2
− ib

)
= ρ0

(
1

2
+ ib

)
.

This latter statement is true since ρ0 is defined in terms of ζ, and ζ has symmetry about the x-axis and
therefore so does its derivative.

Now consider z ∈ Ω1 ∩ Ω3. This implies |z| = 1. In this case we see that ρ0 (z) = |z|−2
ρ0 (1/z) as

1/z = z, and ζ is symmetric. Finally, consider z ∈ Ω2 ∩ Ω3. One can show that in this case that

Re ζ (1/z) = −Re ζ (1− z) and Im ζ (1/z) = Im ζ (1− z) .

This implies |ζ (1/z)| = |ζ (1− z)|. Moreover, one can show that for z ∈ Ω2 ∩ Ω3,

Re
z

|z|2
√

1− 1/z
= Im

1

(1− z)
√
z

and Im
z

|z|2
√

1− 1/z
= −Re

1

(1− z)
√
z
.

These computations imply the last case, and therefore continuity of the whole metric.
To show ultrahyperbolicity, we now need to show there exists a supporting metric. Note that there is

already a supporting metric for ρ on the interiors of Ω1, Ω2, and Ω3 as ρ was given by the pullback of a
Poincaré metric, and it was extended via further pullbacks. Thus, we only have to show there is a supporting
metric on the lines separating Ω1, Ω2, and Ω3. We claim that if we can the existence of such a support r on
Ω1 ∩Ω2, then we are done. This is because if z ∈ Ω2 ∩Ω3, then |z|−2

r (1/z) is a supporting metric induced
by the one on Ω1 ∩ Ω2. Similarly, if z ∈ Ω1 ∩ Ω3, then r (1− z) is a supporting metric induced by the one
on Ω2 ∩ Ω3.

We claim that the original ρ0 is a supporting metric for ρ on Ω1∩Ω2. One needs only to show ρ0 (z) ≤ ρ (z)
locally, and have equality on Ω1 ∩Ω2. Clearly we have such equality. To show the inequality, we claim that
it suffices to know ∂ρ0/∂x < 0 on Ω1 ∩ Ω2. If ∂ρ0/∂x < 0, then for any z ∈ Ω1 ∩ Ω2, there is a small
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horizontal line centered at z so that ρ0 is decreasing. We can then consider the union of these strips around
some fixed z to make an open neighborhood U containing z. Clearly ρ0 (z) = ρ (z). Moreover, for any point
in Ω1 ∩ U , ρ0 = ρ. Similarly, for any point w in Ω2 ∩ U , since ρ0 was decreasing on these strips, we have
that ρ0 (w) ≤ ρ0 (1− w) = ρ (w) as 1− w is mapped back into Ω1. This implies ρ0 (z) ≤ ρ (z) for all z ∈ U ,
and therefore ρ0 is a suitable supporting metric on Ω1 ∩ Ω2.

We now show that ∂ρ0/∂x < 0. This is equivalent to showing ∂ log ρ0/∂x < 0. Since log ρ0 (z) =
log |ζ ′ (z) /ζ (z)| − log (4− log |ζ (z)|), we have that

∂ log ρ0

∂x
= Re

(
d

dz
log

∣∣∣∣ζ ′ (z)ζ (z)

∣∣∣∣)+ Re

(∣∣∣∣ζ ′ (z)ζ (z)

∣∣∣∣ (4− log |ζ (z)|)−1

)
.

Since
ζ ′ (z)

ζ (z)
=

1

z
√

1− z
and

d

dz
log

ζ ′ (z)

ζ (z)
=

3z − 2

2z (1− z)
,

and 1− z = z on Ω1 ∩ Ω2, we have that

∂ log ρ0

∂x
(z) = Re

(
3z − 2

2zz

)
+ Re

√
z

zz
(4− log |ζ (z)|)−1

= − 1

4 |z|2
+ Re

√
z

|z|2
(4− log |ζ (z)|)−1

≤ − 1

4 |z|2
+

1

|z|2
(4− log |ζ (z)|)−1

< 0

as log |ζ (z)| is negative, and Re
√
z ≤ 1. Thus, ρ0 is a supporting metric on Ω0,1 and therefore ρ is

ultrahyperbolic. Thus, ρ serves as a lower bound for λ0,1.
The second inequality is a straightforward computation. We know∣∣∣∣ζ ′ (z)ζ (z)

∣∣∣∣ (4− log |ζ (z)|)−1 ≤ λ0,1 (z) ≤ 1

|z| log 1
|z|

for all z ∈ Ω1. It follows that,

log

(∣∣∣∣ζ ′ (z)ζ (z)

∣∣∣∣ (4− log |ζ (z)|)−1

)
≤ log λ0,1 (z) ≤ log

(
1

|z| log 1
|z|

)
= − log |z| − log log

1

|z|
.

This implies

log

(∣∣∣∣ζ ′ (z)ζ (z)

∣∣∣∣ |z| (4− log |ζ (z)|)−1
log

1

|z|

)
≤ log λ0,1 (z) + log |z|+ log log

1

|z|
≤ 0.

Now as z → 0 we see that, ∣∣∣∣ζ ′ (z)ζ (z)

∣∣∣∣ |z| → 1 and − log |z|
4− log |ζ (z)|

→ 1

by the definition of the derivative and L’Hôpital’s rule. Thus, on the lefthand side the inequality tends to 0,
and therefore log λ0,1 (z) = − log |z| − log log 1

|z| +O (1) as z → 0. �

Note that the reason why e4 was chosen in the beginning of the proof is made clear when justifying
∂ log ρ0/∂x < 0 in the very last step.

The Picard theorems

As an application of the bounds obtained on Poincaré metrics, and Ahlfors’s lemma, we prove an explicit
quantitative version of Picard’s little theorem.
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Theorem 42 (Schottky). Suppose that f ∈ O (D) omits the values 0 and 1. Then

log |f (z)| ≤ (7 + max (0, log |f (0)|)) 1 + |z|
1− |z|

.

Proof. We know that f and 1/f satisfy the same assumptions, and therefore we can obtain an upper bound
or a lower bound for |f | to obtain our result. In our case, we look for a lower bound. By Ahlfors’s lemma
we know that

λ0,1 (f (z)) |f ′ (z)| ≤ 2

1− |z|2
.

By integrating along the straight line from 0 to some z ∈ D,

� f(z)

f(0)

λ0,1 (w) |dw| =
� z

0

λ0,1 (f (t)) |f ′ (t)| |dt| ≤
� z

0

2

1− |t|2
|dt| = log

1 + |z|
1− |z|

.

There are two cases to consider: whether or not the image of the straight line lives in Ω1 (the same one
defined in the last section).First assume that the image of the straight line lives in Ω1. Then by the estimate
obtained in the last section, we have that

� f(z)

f(0)

(4− log |ζ (w)|)−1 | d log ζ (w)| =
� f(z)

f(0)

∣∣∣∣ζ ′ (w)

ζ (w)

∣∣∣∣ (4− log |ζ (w)|)−1 |dw| ≤ log
1 + |z|
1− |z|

.

Now since d log |ζ| ≥ 0, we have that −d log |ζ| ≤ |d log ζ|. Thus,

−
� f(z)

f(0)

(4− log |ζ (w)|)−1
d |log ζ (w)| ≤ log

1 + |z|
1− |z|

,

and therefore
4− log |ζ (f (z))|
4− log |ζ (f (0))|

≤ 1 + |z|
1− |z|

.

Recalling the explicit form of ζ, we see that

|ζ (w)| = |w|∣∣√1− w + 1
∣∣2 .

Now recall that f (0) , f (z) ∈ D. Let w ∈ D be arbitrary. Since Re
√

1− w > 0 we have that |ζ (w)| ≤ |w|.
Moreover, since 1−w is in the open disk of radius 1 centered at 1, we have that

∣∣√1− w
∣∣ is bounded above

by
√

2. Thus,
∣∣√1− w + 1

∣∣ ≤ 1 +
√

2, which implies
(
1 +
√

2
)−2 |w| ≤ |ζ (w)|. It follows that,

4−log |f (z)| ≤ 4−log |ζ (f (z))| ≤ (4− log |ζ (f (0))|) 1 + |z|
1− |z|

≤
(

4−
(
−2 log

(
1 +
√

2
)

+ log |f (0)|
)) 1 + |z|

1− |z|
.

Then since log
(
1 +
√

2
)
< 1, we have that

log |1/f (z)| ≤ (6 + log |1/f (0)|) 1 + |z|
1− |z|

.

Now consider the case in which the image of the line is not contained in Ω1. We then have f (z) ∈ Ω1 or
f (z) /∈ Ω1. If f (z) ∈ Ω1, then there exists a point w0 in the image of the line that intersects the boundary
of Ω1. Moreover, we can pick w0 to be the last point that intersects the boundary. In this case, we would
have that � f(z)

w0

(4− log |ζ (w)|)−1 | d log ζ (w)| ≤
� f(z)

f(0)

(4− log |ζ (w)|)−1 | d log ζ (w)| .

Then analogously we would obtain,

− log |f (z)| ≤ (6− log |w0|)
1 + |z|
1− |z|

.
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Note however in this case we would have

log |1/f (z)| ≤ (6 + log 2)
1 + |z|
1− |z|

as |w0| ≥ 1/2.
Now consider the case where f (z) /∈ Ω1. It follows that |f (z)| ≥ 1/2, and therefore log 2 > log |1/f (z)|.

However, (1 + |z|) / (1− |z|) ≥ 1, and therefore the above inequality is obtained trivially as log 2 < 1.
Combining the two cases we see that

log |1/f (z)| ≤ (6 + log 2 + max (0, log |1/f (z)|)) 1 + |z|
1− |z|

.

We can then replace f with 1/f and we then see that this inequality implies the one in the stated theorem. �

We now apply Schottky’s theorem to obtain information about the behavior of meromorphic functions
on the plane. We know from Liouville’s theorem that bounded entire functions are constant. Moreover,
one can show that images of non-constant entire functions are dense in C. From the Casorati-Weierstrass
theorem, we know the behavior of holomorphic functions about essential singularities. That is, for any
essential singularity, the image of any punctured neighborhood about that singularity is dense in C.

Theorem 43 (The little Picard theorem). If f is meromorphic in the plane and omits three values, then f
is constant.

Proof. Let a, b, c be the three values f omits. It follows that

F (z) =
c− b
c− a

f (z)− a
f (z)− b

is entire, and omits 0 and 1. Now fix R > 0, and define g from the unit disk to the disk of radius R by the
rule g (z) = Rz. By Schottky’s theorem,

log |F (g (z))| ≤ (7 + max (0, log |F (0)|)) 1 + |z|
1− |z|

.

It follows that

log

∣∣∣∣F (Reiθ2
)∣∣∣∣ ≤ 3 (7 + max (0, log |F (0)|)) .

Since F
(
Reiθ/2

)
is bounded above by a finite constant independent of R and θ, we have that F is constant

and therefore so is f . �

Note that from the above proof the little Picard theorem for entire functions follows immediately as we
only apply Schottky’s theorem to an entire function that omits two values.

Theorem 44 (The big Picard theorem). If f is meromorphic and omits three values in a punctured disk
0 < |z| < δ, then it has a meromorphic extension to the full disk.

Proof. Without loss of generality assume that δ = 1 and that f omits 0, 1,∞. Since we want to show
f has a meromorphic extension to the whole disk, it is sufficient to show good behavior of f in a small
neighborhood of 0. Fix |z| < 1/4 and |z0| = 1/2 such that arg z = arg z0. Note that if f (z) /∈ Ω1, we have
that 1/2 ≤ |f (z)|. This implies f is well-behaved on these values of z. So assume f (z) ∈ Ω1. Since f is
defined in the punctured disk and maps into Ω0,1, we have that

λ0,1 (f (z)) |f ′ (z)| ≤ 1

|z| log 1
|z|
.

By integrating about the straight line γ from z0 to z we have that,

� z

z0

λ0,1 (f (w)) |f ′ (w)| |dw| ≤
� z

z0

|dw|
|w| log 1

|w|
=

� 1

0

|γ′ (t)|
|γ (t)| log 1

|γ(t)|
dt.
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Since
d

dt
log log

1

|γ (t)|
=

|γ′ (t)|
|γ (t)| log 1

|γ(t)|

we have that

� f(z)

f(z0)

λ0,1 (t) |dt| =
� z

z0

λ0,1 (f (w)) |f ′ (w)| |dw| ≤ log log
1

|z|
− log log

1

1/2
≤ log log

1

|z|
.

By the same argument as in the proof of Schottky’s theorem, we have that

log (4− log |f (z)|) ≤ log log
1

|z|
+ log

(
4 + 2 log

(
1 +
√

2
)
− log |w0|

)
where w0 ∈ Ω1. Since |w0| ≤ 1, we have that

− log |f (z)| ≤ C log
1

|z|

for some integer C > 0 independent of z. This implies 1 ≤ |f (z)| / |z|C for z such that f (z) ∈ Ω1. But recall

that 1/2 ≤ |f (z)| for z such that f (z) /∈ Ω1. In particular this implies |f (z)| / |z|C is bounded below by
some positive number independent of z. By the Casorati-Weierstrass theorem we have that the singularity
at 0 for f (z) /zC is not essential, and therefore f has meromorphic extension to D. �
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Appendix

Nevanlinna-Pick interpolation

The following theorem proven by Georg Pick and Rolf Nevanlinna independently in 1916 and 1919 respec-
tively is an n-point generalization of the Schwarz-Pick theorem. It answers the following question: given
initial data z1, . . . , zn ∈ D and target data w1, . . . , wn ∈ D, when does there exists f ∈ O (D,D) so that
f (zi) = wi for all 1 ≤ i ≤ n?

Theorem 45 (Nevanlinna-Pick Interpolation). Let z1, z2, . . . , zn be our initial data in D, and w1, w2, . . . , wn
our target data in D. Then there exists a holomorphic f : D → D that interpolates our data if and only if
the matrix (

1− wjwk
1− zjzk

)n
i,j=1

is positive semi-definite.

Note that this is a clear generalization of the Schwarz-Pick theorem. For n = 2, if z1, z2 ∈ D, f ∈ O (D,D),
and w1 = f (z1) and w2 = f (z2), then

δ (w1, w2) ≤ δ (z1, z2)

1− δ (z1, z2) ≤ 1− δ (w1, w2)

1− |z1|2

1− z1z2
· 1− |z2|2

1− z1z2
≤ 1− |w1|2

1− w1w2
· 1− |w2|2

1− w1w2

1− w1w2

1− z1z2
· 1− w1w2

1− z1z2
≤ 1− |w1|2

1− |z1|2
· 1− |w2|2

1− |z2|2

0 ≤

∣∣∣∣∣∣
1−|w1|2

1−|z1|2
1−|w2|2

1−|z2|2
1−|w1|2

1−|z1|2
1−|w2|2

1−|z2|2

∣∣∣∣∣∣ .
Note that the above is a string of if and only if statements. To complete the proof for the n = 2 case of
Nevanlinna-Pick interpolation, we would have to find an explicit f that interpolates the data.

We only prove the forward direction for the higher dimensional case. To do this we will need an integral
representation which will be proven at the end of the section.

Proof. Set F (z) = 1+f(z)
1−f(z) . Note that F has positive real part. Set F = U + iV . We have that,

F (z) =
1

2π

� 2π

0

eiθ + z

eiθ − z
U
(
eiθ
)
dθ + iV (0) .

It follows that

F (zh) + F (zk) =
1

2π

� 2π

0

eiθ + z

eiθ − z
U
(
eiθ
)

+
e−iθ + zk
e−iθ − zk

U
(
eiθ
)
dθ

=
1

π

� 2π

0

1− zhzk
(eiθ − zh) (e−iθ − zk)

U
(
eiθ
)
dθ.

Now note that ∣∣∣∣∣
n∑
k=1

αk

∣∣∣∣∣
2

=

n∑
i,j=1

αiαj .
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It follows that,

n∑
h,k=1

F (zh) + F (zk)

1− zhzk
thtk =

n∑
h,k=1

1

π

� 2π

0

thtk
(eiθ − zh) (e−iθ − zk)

U
(
eiθ
)
dθ

=
1

π

� 2π

0

U
(
eiθ
) n∑
h,k=1

thtk
(eiθ − zh) (e−iθ − zk)

U
(
eiθ
)
dθ

=
1

π

� 2π

0

∣∣∣∣∣∣
n∑
j=1

tj
eiθ − zj

∣∣∣∣∣∣
2

U
(
eiθ
)
dθ ≥ 0

as U ≥ 0. Moreover, since F = 1+f
1−f , we see that F (zh) + F (zk) = 2 (1− whwk) / ((1− wh) (1− wk)). It

follows that our Hermitian form is semi-positive definite. �

We now give the proofs of the integral representation for holomorphic functions.

Lemma 46. Suppose f ∈ O (D). Then for all z ∈ D we have that

1

2πi

�
∂D

f (w)

w − z
dw = f (0).

Proof. Since f is holomorphic, we know f has power series representation

f (w) =

∞∑
k=0

f (k) (0)

k!
wk.

Parametrizing ∂D by w = eiθ for 0 ≤ θ ≤ 2π, we see that

1

2πi

�
∂D

f (w)

w − z
dw =

1

2πi

�
∂D

∑∞
k=0

f(k)(0)
k! wk

w − z
dw

=
1

2πi

� 2π

0

∑∞
k=0

f(k)(0)
k! e−iθk

eiθ − z
ieiθ dθ.

=
1

2π

� 2π

0

∑∞
k=0

f(k)(0)
k! e−iθk

1− ze−iθ
dθ.

Since z ∈ D we can use the geometric series. It follows that,

1

2πi

�
∂D

f (w)

w − z
dw =

1

2π

� 2π

0

( ∞∑
k=0

f (k) (0)

k!
e−iθk

)( ∞∑
n=0

e−inθzn

)
dθ.

Now recall that if m ∈ Z, we have � 2π

0

eimθ dθ =

{
2π m = 0

0 m 6= 0
.

So it follows that
1

2πi

�
∂D

f (w)

w − z
dw =

1

2π

� 2π

0

f (0) dθ = f (0).

�

Theorem 47. Suppose f = u+ iv ∈ O (D). Then,

f (z) =
1

2π

� 2π

0

eiθ + z

eiθ − z
u
(
eiθ
)
dθ + iv (0) .
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Proof. By the above lemma and some algebra, we know

f (z) + f (0) =
1

2πi

�
∂D

f (w) + f (w)

w − z
dw

=
1

2πi

�
∂D

2u (w)

w − z
dw

=
1

2π

� 2π

0

2u
(
eiθ
)

eiθ − z
eiθ dθ

=
1

2π

� 2π

0

u
(
eiθ
) eiθ + z + eiθ − z

eiθ − z
dθ

=
1

2π

� 2π

0

eiθ + z

eiθ − z
u
(
eiθ
)
dθ +

1

2π

� 2π

0

u
(
eiθ
)
dθ

By the mean value property for harmonic functions, we know

f (z) + f (0) =
1

2π

� 2π

0

eiθ + z

eiθ − z
u
(
eiθ
)
dθ + u (0) .

Then since f (0) = u (0)− iv (0), we have our claim. �

Two lemmas for Bloch’s theorem

Lemma 48. Let f : D → C be holomorphic. Furthermore, assume there exists an open subset U ⊆ D
such that U ⊆ D and f restricted to U is a biholomorphism with image a disk, and f ′ (z) 6= 0 for all
z ∈ ∂U . It follows that there exists an open subset W ⊆ D such that f remains a biholomorphism, and
U ⊆W ⊆W ⊆ D.

Proof. Since U is bounded, by this stackexchange answer, f is injective on U .

Fix z ∈ ∂U . We claim that there exists ε > 0 such that f is injective on U ∪ Bε (z). Suppose not, then
for all sufficiently large n ∈ N, there exists an ∈ U \ B1/n (z) and bn ∈ B1/n (z) \ U such that bn → z, and

f (an) = f (bn). By continuity, f (bn) → f (z). Moreover, since U is compact, there exists a convergent
subsequence ank

. It follows that,
f (ank

) = f (bnk
)→ f (z) .

By injectivity on U , ank
→ z, and therefore any limit point of {an} is z, implying an → z. Now consider any

neighborhood around z that admits an injective restriction for f . It follows that for large enough n, both an
and bn live in the neighborhood. This contradicts the local injectivity at z, and therefore there exists ε > 0
such that f is injective on U ∪Bε (z).

Now suppose for contradiction that there exists no open W ⊆ D so that f remains a biholomorphism,
and U ⊆W ⊆W ⊆ D. Define Un = {z ∈ D : d (z, U) < 1/n}. It follows that for sufficiently large n, for any
zn ∈ Un \ U , there exists wn ∈ Un so that wn 6= zn, and f (zn) = f (wn).

For sufficiently large n, pick zn ∈ Un \ U so that zn → z is a convergent sequence. Note that z ∈ ∂U .
Let wn be the corresponding sequence so that wn 6= zn, and f (zn) = f (wn). Now let wnk

be a subsequence
that converges to w ∈ U . Note that this implies f (z) = f (w). Since f is a homeomorphism on U , it follows
that z = w. However, this contradicts the injectivity of U ∪Bε (z) for some sufficiently small ε. �

This lemma can then be applied to the situation we had in the proof for Bloch’s theorem. We extend
D (z0) to an open set W such that f is injective on W , and D (z0) ⊆ W ⊆ W ⊆ D. This contradicts
maximality of ∆′ (w0), as the image of W , which is open, contains ∆′ (w0).

Lemma 49. If z1 ∈ D (z0), and w1 = f (z1), then R (w1) ≤ |w1 − b|.
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Proof. Consider ∆′ (w1) and D (z1) defined as before. Let c be the line segment from w1 to b. Suppose
for contradiction b ∈ ∆′ (w1), and recall that b /∈ ∆′ (w0). We are done if we can show a ∈ ∆′ (w1). Note
that all of c would be contained in ∆′ (w0) ∩ ∆′ (w1) except for the last point, b. Note that the inverse
functions f−1

0 : ∆′ (w0)→ D (z0), and f−1
1 : ∆′ (w1)→ D (z0) have the same values on all of c except b. By

continuity, it follows that a ∈ D (z1). Since b is in the interior of ∆′ (w1), it follows that a ∈ D (z1). Thus,
R (w1) ≤ |w1 − b|. �
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