1. Introduction

Consider \(\{ e_1, e_2, \ldots, e_n \} \), a fixed ordered basis of \(\mathbb{C}^n \). Recall that the standard flag of \(\mathbb{C}^n \) is defined by \(E_1 \subset E_2 \subset \cdots \subset E_n \), where \(E_k = \text{span}\{e_1, e_2, \ldots, e_k\} \). We now introduce partial flag varieties. Let \(m = (m_1, m_2, \ldots, m_k) \), where \(0 < m_1 \leq m_2 \leq \cdots \leq m_k < n \). Let \(X = \text{Fl}(m, n) \), a partial flag variety, then \(X = \{ (V_{m_1} \subset V_{m_2} \subset \cdots \subset V_{m_k} \subseteq \mathbb{C}^n) \mid \dim(V_{m_i}) = m_i \} \). Let \(E_m = (E_{m_1} \subset E_{m_2} \subset \cdots \subset E_{m_k}) \in X \) and let \(P \) denote the stabilizer of \(E_m \), i.e. \(\{ g \in GL(n) \mid g.E_m = E_m \} \). Let \(m_0 = 0 \) and \(m_{k+1} = n \), then \(P \) is the group of invertible block upper triangular matrices, where the dimension of the \(i \)th block is \(m_{i+1} - m_i \). The following are other key subgroups of \(GL(n) \) that we will consider: \(T \) is the torus and the set of invertible diagonal matrices, \(B \) is the Borel subgroup and is the set of invertible upper triangular matrices. We have the following relation among these subgroups: \(T \subseteq B \subseteq P \subseteq GL(n) \). We will also only consider Weyl groups of type \(A \) so \(W = S_n \).

2. Exercises

Exercise 1. We shall show that \(X^T = \{ w.E_m \mid w \in S_n \} \).

It is easy to see that \(w.E_m \in X^T \). Now to show the other direction, consider \(t \in T \) and write \(t \) as

\[
\begin{bmatrix}
\lambda_1 & 0 & 0 & \ldots & 0 \\
0 & \lambda_2 & 0 & \ldots & 0 \\
0 & 0 & \lambda_3 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda_n
\end{bmatrix}
\]

Let \(M \in X \) and write \(M \) as \([v_1 \ v_2 \ \ldots \ v_n] \) where \(v_i \) is a \(n \times 1 \) vector. Then in order for \(M \) to be in \(X \), we must have that the span of the first \(m_1 \) vectors after multiplying by scalars from \(t \) must be the same as \(E_{m_1} \), so it follows that there can only be \(m_1 \) nonzero rows among these first \(m_1 \) vectors because we allow \(t \) to vary. Thus using column operations, we can get that these \(m_1 \) vectors only have \(m_1 \) nonzero entries combined and each is in a different row. We continue this process for \(E_{m_2} \) all the way to \(E_{m_k} \) and \(\mathbb{C}^n \) from which we can see that \(M \) has the form \(w.E_m \) for some \(w \in S_n \).

Normalizer. Define \(N_G(T) = \{ g \in GL(n) \mid gTg^{-1} = T \} \). One can show that \(N_G(T) = \{ \text{all permutations matrices with arbitrary nonzero numbers in the 1's places} \} = S_nT \). We now show some relations between \(N_G(T) \) and \(W \).

\textit{Date: July 13, 2016.}
Exercise 2. \(W = S_n = N_G(T)/T \) and \(W_P = S_n \cap P = N_P(T)/T \) and furthermore \(W_P \leq W \).

First proof that \(N_G(T) = S_n.T \). Let \(M \in N_G(T) \) and let \(T' \) be a diagonal matrix such that \(T_{ii} = i \), then \(MT'M^{-1} = T^* \) is also a diagonal matrix. Since conjugation preserves spectrum, it must be that \(T_{ii} = \sigma(i) \) for some permutation \(\sigma \). Since \(MT = T'M, S_{ij}j = \sigma(i)S_{ij}, S_{ij}(j - \sigma(i)) = 0 \). So \(S_{ij} = 0 \) for all \(\sigma(i) \neq j \). Each row has only one non-zero entry. So \(M \) must be of the form \(\sigma \).

Now since \(N_G(T) = S_n.T \), the homomorphism \(\phi : N_G(T) \to W \) where \(\phi(M) = w \) with \(M = wT' \) for some permutation \(w \) and diagonal matrix \(T' \). \(w \) is the identity permutation if and only if \(M \in T \). So the kernel of \(\phi \) is \(T \). Therefore \(N_G(T)/T \cong W \). Therefore we have our desired isomorphism and a similar argument works for \(W_P \).

Note that \(W_P \) is made up of the permutations in \(S_n \) that fit the shape of \(P \). It is clear from the definition of \(P \) that the identity element is in \(W_P \). If you consider the transpositions that generate all the possible permutations in one specific block of \(P \), then it is easy to see that \(W_P \leq W \) since these transpositions generate \(W_P \).

Exercise 3. We will show that for \(w \in W \) there exists a unique permutation \(u \in wW_P \) of minimal length where length of \(u = l(u) = \#\{(i < j) \mid u(i) > u(j)\} \).

We provide the following algorithm for constructing \(u \). Start with \(w \) and multiply \(w \) by \(s \in W_P \) only if \(l(ws) < l(w) \). Do this for all elements \(s \in W_P \) so that at the end, we have \(u = ws_{s_1}s_{s_2}\cdots s_{s_k} \). The claim is that this \(u \) is of minimal length. For sake of contradiction, suppose we have \(v \in W_P \) such that \(l(v) < l(w) \).

Then this means that there exists \(s \in W_P \) such that \(vs = u \) so \(v = us^{-1} \). Therefore \(l(us^{-1}) < l(u) \), however this is not possible by construction of \(u \). \(u \) is also unique. Suppose \(u_1 \) and \(u_2 \) both have minimal length. Then \(u_1 = u_2w_2 \) and \(u_2 = u_1w_1 \) for \(u_1, w_1 \in W_P \). Hence \(l(u_1) \leq l(u_1w_1) = l(u_2) \) and \(l(u_2) \leq l(u_2w_2) = l(u_1) \), by definition of \(u_1 \) and \(u_2 \) being elements of minimal length in \(wW_P \). We also have \(l(u_1) = l(u_2) \) so it follows that \(w_1 = w_2 = e \) and therefore, \(u_1 = u_2 \).

Grassmannian. Let \(X = Gr(m, n) \). We will view this Grassmannian as a partial flag variety. \(P \) consists of invertible block upper triangular matrices with two blocks. The block in the top left has size \(m \) and the block in the bottom right has size \(n - m \). We now describe \(W_P \) in terms of its generators. The generators are \{\{(i) \mid 2 \leq i \leq m\} \cup \{((m+1)j) \mid m+2 \leq j \leq n\} \}. Let \(W_P \subseteq W \) be the set of all such \(u \) described in exercise 3. In \(X \), \(W_P \) is the set of all permutations that send \((12\ldots m) \) to \(\lambda \) numbers that are ordered from lowest to highest so there are \(\binom{n}{m} \) elements in \(W_P \). Therefore we can discuss a bijection between young diagrams and \(W_P \). Note that we already have a bijection between young diagrams and \(X^T \) since \(X^T \) corresponds to Schubert symbols, which are used to construct a young diagram.

Exercise 4. We shall find a bijection between \(X^T \) and \(W_P \) and between young diagrams and \(X^T \).

We will show a bijection between \(W/W_P \) and \(X^T \) since \(W/W_P \) is essentially equivalent to \(W_P \). Let \(w.E_m \in X^T \) be an arbitrary element. We prove that \(\phi(w.E_m) = wW_P \) is a bijection. By exercise three, we know there exists a unique minimal length \(u \) for \(wW_p \), since \(uW_p = wW_p \) for some \(v \in W_p \). Now by definition of stabilizer \(v.E_m = E_m \) for all \(v \in W_P \). So \(\phi(v.E_m) = \phi(v.w.E_m) = \phi(u.E_m) = uW_P \). Since such a \(u \) exist and is unique. \(\phi \) is a bijection. A bijection with young diagrams follows through bijection between young diagrams and \(X^T \).

Note that by this bijection, \(l(u) = |\lambda| \). Cool! In fact, we can say more about the connection between \(u \) and \(\lambda \). For \(1 \leq i \leq m \), the number of boxes in row \(i \) corresponds with the number of inversions with \(i \), i.e. the number of boxes = \#\{\(j \mid j > i \) and \(u(i) > u(j) \}\}. Therefore, \(u \) will completely determine \(\lambda \).