SCHUBERT CELLS AND YOUNG DIAGRAMS

CHI-NUO LEE AND ARTHUR WANG

1. INTRODUCTION

We start by defining key terms. Let X = Gr(m, n) denote a fixed Grassmannian. Consider $\{e_1, e_2, \dots, e_n\}$, a fixed ordered basis of \mathbb{C}^n . The standard flag of \mathbb{C}^n is defined by $E_1 \subset E_2 \subset \cdots \subset E_n$, where $E_k =$ span $\{e_1, e_2, \dots, e_k\}$. Let $B \subset GL(n)$ be the Borel subgroup. Let $B.V_I$ be the associated Schubert cell and X_I be the associated Schubert Variety for some Schubert symbol I where $I = \{i_1, i_2, \dots, i_m\}$. Let λ denote the Young diagram for I, which is constructed as follows: Given an $(n-m) \ge m$ matrix, you move up in the i^{th} step if $i \in I$, otherwise you move right. The resulting Young diagram is obtained by taking all the boxes in top left part of the matrix.

2. Exercises

Exercise 1. We first obtain a formula for $|\lambda|$, the number of boxes in a Young diagram given its Schubert symbol *I*.

Let I be the Schubert symbol for λ . As we form the Young diagram through a series of up and right moves on a $(n - m) \times m$ matrix determined by I, we see that every time we move up, all the boxes to the left in that row are included in λ . Now suppose we we move up at step i_j , then this means out of a total of i_j moves, j of them are moves up and $i_j - j$ are moves to the right. Therefore we see that the number of boxes to the left of step i_j is just $i_j - j$ so it follows that $|\lambda|$ is

(1)
$$\sum_{j=1}^{m} i_j - j$$

Exercise 2. We now show that a Schubert cell $B.V_I \cong \mathbb{C}^{|\lambda|}$

We first begin by showing the number of free entries in $B.V_I$ is the same as $|\lambda|$. Consider $b \in B$ and write b as

Γ	$b_{1,1}$	$b_{1,2}$	$b_{1,3}$		$b_{1,n}$
	0	$b_{2,2}$	$b_{2,3}$		$b_{2,n}$
	0	0	$b_{3,3}$		$b_{3,n}$
			•		
	:	:	:	••	:
	0	0	0		$b_{n,n}$

Since $V_I = \text{span}\{e_{i_1}, e_{i_2}, \dots, e_{i_m}\}$, we can represent V_I as an $n \times m$ matrix, where the j^{th} column is e_{i_j} . Denote the matrix $b.V_I$ as M; this is an $n \times m$ matrix whose j^{th} column looks like the following:

Date: July 2, 2016.

$$\begin{bmatrix} b_{1,i_j} \\ \vdots \\ b_{i_j,i_j} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

L \smile J Now we can scale the matrix M by column operations so that entry $M_{i_j,j}$ is 1, i.e. the j^{th} column becomes:

$$\begin{bmatrix} b_{1,i_j} \\ \vdots \\ \widetilde{b}_{i_{j-1},i_j} \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

We can perform more column operations so that for some entry $M_{m,n}$, if $m = i_j$ and n > j, then $M_{m,n} = 0$. Therefore for a given column j, the number of free entries is $i_j - j$ so the total number of free entries in $B.V_I$ is precisely the quantity given by (1).

Since $V_I = V_{\lambda} \in X$, we have a bijection between $B.V_{\lambda}$ and $\mathbb{C}^{|\lambda|}$ as desired.