Elucidating tumor evolutionary patterns using high-depth molecular data
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Cancer is the second leading cause of death in the United States[1l] and yet it only has two
main treatments, radiation and chemotherapy. A more efficient way to eliminate cancerous cells is
with a targeted approach[2]. In order to create more effective precision medication, there exists a
need to understand how cancer develops and and to determine which cancerous mutations are most
frequent in patients. The optimal way to answer these questions is by sequencing cancer tumors and
tracking mutations over time with the help of mathematical trees. We use two genetic distances,
Hamming and Nei to help structure the trees. We conclude that Nei’s distance does a better job of
accurately reflecting the changes in mutations over time and thus can be used in the future to track

the evolution of cancerous cells.

I. INTRODUCTION

The second leading cause of death in the United States
is cancer[1] and yet it only has two main treatments, ra-
diation and chemotherapy. Although chemotherapy is
somewhat effective at removing cancer, it kills hundreds
of healthy cells in the process. A more effective way of
killing cancerous cells is through targeted therapy or a
medication that goes after a single specific mutation[2].
Currently, there are very few targeted therapy medica-
tions available that only help a select number of patients.
Targeted medications take a large amount of scientific
research to develop because they involve finding and fo-
cusing on a very specific type of cell which is a lot more
challenging for a medication to achieve.

In order to cure more patients at a faster rate and
in a less damaging way, common mutations need to be
located. This way scientists can focus on finding tar-
geted therapy treatment for these common mutations as
opposed other less frequent ones. Another way to im-
prove cancer treatments is to understand the evolution
of cancer including growth rate and the factors that af-
fect it. This would allow doctors to be one step ahead
and therefore know which cancerous mutations may de-
velop at which rates to prevent relapse before it occurs.
Targeted medication can be used earlier in the process or
more aggressive chemotherapy may be applied to muta-
tions that would otherwise replicate rapidly.

In this study, we tracked the appearance, disappear-
ance, and change in the amount of certain cancerous
mutations. The best way to track these mutations
among patients is with the help of high-throughput
sequencing[3]. Our study uses, high-throughput sequenc-
ing to read the DNA from a tumor and determine which
parts are cancerous, what percentage of the tumor is can-
cerous, and what types of cancerous mutations occurred.
The output reveals which mutations are present and how
prevalent they are in the sample.

These results can then be displayed in a mathematical
model called a phylogenetic tree[4]. This visual repre-
sentation of the patient data is very similar to a tree
found in the graph theory portion of mathematics be-
cause it too has no cycles and only one path from every
vertex. However, it differs due to the fact that phyloge-
netic trees may have more edges than vertices in order to
more accurately display the data. The appearance of a
phylogenetic tree and the relationship between trees can
be calculated since the connection between vertices and
the length of the edges are all based on mathematical
calculations. We mainly use a neighbor-joining method
in our tree construction. This simply means the tree
is created from a distance matrix, which calculates the
variation between two samples. There are multiple ways
to determine exactly how different two samples may be
from each other which will be discussed later in the pa-
per. Regardless of the method used, once the distances
are placed into the matrix, an algorithm which repeat-
edly finds the most similar samples is applied until all
samples are used and a tree is created[5][6]. The end
result is a tree with branches representing the distance
between mutations and an overall picture of the changes
in mutations over time. Figure 1 shows how different
types of trees reflex different evolutionary paths.

FIG. 1. Phylogentic Tree Relationships



In this study we use high-throughput sequencing data
from patients at Rutgers Cancer Institute of New Jersey
to construct phylogenetic trees and evaluate them. The
main goal is to look for patterns among trees that may
lead to answers about cancer’s evolution and track which
mutations come up most frequently among patients.

II. MATERIALS AND METHODS:
A. Sequencing Data

After a cancerous tumor has been sequenced, all rel-
evant information needs to be pulled from the high-
throughput sequencing lab’s output[3]. A few demo-
graphic features such as gender, age, and type of cancer
are found in sequencing output and may be relevant for
future work in analyzing cancer growth but, are not our
focus. The important data pulled includes the purity of
the sample, the allele frequency, location and depth of all
cancerous mutations. The purity of the sample is simply
the amount of the sample that was found to contain can-
cerous mutations. The allele frequency reveals out of all
cells in the tumor, what percentage contain that particu-
lar cancerous mutation. The location of the mutation is
given by the gene and amino acid where the mutation oc-
curred, along with the depth representing how confident
we are in the allele frequency of the given mutation.
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FIG. 2. LOHGIC Sample Output

B. LOHGIC

Along with the information gathered from the sequenc-
ing data, the type of mutation that occurred may also be
calculated using LOHGIC algorithm[7]. Figure 2 shows
an example of LOHGIC’s output. This software takes the
purity, allele frequency, and depth of any mutation and
outputs the type of mutation that occurred and how con-
fident it is with its selection. There are three main parts
to a mutation which include, germline vs. somatic, the
number of copies of a gene (Y), and the number of can-
cerous copies (CNmut). Figure 3 shows different types of
mutations and what they mean. This information is cru-
cial because it affects the treatment of the patient. For
example, germline mutations are ones the patient is born

with and thus are present in every cell in the body, in-
cluding non-cancerous ones and can be passed onto their
children. As opposed to somatic mutations, which just
occur in that particular cancerous cell. Germline muta-
tions require a much more aggressive approach to treat-
ment since they are more likely to appear all over the
body with the mutation being at least partially present
in every cell. Another important value to consider from
LOHGIC’s output is the difference between Y and CN-
mut. This reveals if the cell has any working alleles left or
all wild-type working copies of a gene are deleted. Clearly
if the entire cell has gone cancerous, this will also require
a more aggressive approach than if just one allele is can-
cerous.
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FIG. 3. Types of Mutations

C. Cancer Cell Frequency

In terms of interpreting that data, it may seem like us-
ing the allele frequency may be the best way to measure
the impact or amount of each mutation, but in reality,
the allele frequency is heavily skewed by the purity of
the sample. This can be seen clearly in figure 4. A bet-
ter representation of the data is by using cancer cell fre-
quency, < CCF >. This measure takes the total number
of cells with a certain mutation out of the total num-
ber of cancerous cells as opposed to taking the number
of mutated alleles out of all alleles. The CCF is less
likely to be influenced by shifts in purity and also gives
cells that only have one mutated allele an equal weight
of cancerous cells that have two affected alleles. Along
with calculating CCF, we also added error bars based on
the depth of the allele frequency inputted. This way the
outputted data will have the error that comes with using
sequencing data providing a measure of accuracy.
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FIG. 4. Allele Freq. vs. CCF



D. Errors within Purity

There is discrepancy in the data at times, particularly
when it comes to purity. The purity of the sample is
found by dying the sample and then attempting to dis-
tinguish between cancerous and noncancerous cells un-
derneath a microscope. As a result, some samples have
two purities, one of which is 30% and the other 80%. As
seen in figure 5, purity has a dramatic effect on the CCF
calculation.
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FIG. 5. Error within Purity

III. RESULTS
A. Cleaning Up Purity

As shown figure 5, an inaccurate purity leads to a mis-
leading CCF. Before calculating and comparing CCF's
across samples, the purity needs to be accurate. So, a
purity cleaning algorithm was designed to help determine
the correct purity.

B. Purity Cleaning algorithm

For each sample, there is only one correct purity since
purity is defined as the percentage of cancerous cells. The
problem is how do we find the correct purity based on
the data and mutations given. In order to simplify the
model, we currently assume that all mutations are clonal
or occur in every cancer cell. This is not true for all
datasets and will be improved upon in the future, but
for simplification, it was assumed for this algorithm. The
reason we use only clonal mutations is due to the fact that
their CCF should be equal to one. This way the CCF can
be set to one and the calculations on purity can be traced
back using allele frequency, Y, and CNmut values. The
algorithm assumes that no purity is given and follows 5
basic steps:

1. Calculate the purity for each model

Due to work done with LOHGICI7], the expected vari-
ant allele frequency, < VAF >, can be calculated for

each model based on the purity, Y, and CNmut val-
ues. The equations can be found in figure 6. Since the
VAF, Y and CNmut value is known for each mutation,
the purity value can be solved for. Because we are not
sure on exactly which out of the models shown in fig-
ure 6 the mutation may be, the purity is calculated for
all possible models depending on Y.
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FIG. 6. Somatic vs. Germline

2. Calculate the CCF for each model

Once the purity is known for each model and mutation,
the CCF may be calculated following the algorithm
explained in the section titled Cancer Cell Frequency
and using the following equation:

Cells with n mutation

COF = Cancerous Cells

3. Find the weight of each model

Any mutation may have any of the mutation types in
figure 6, LOHGIC gives us an idea of which models
are most likely and the probability that such model is
correct. These probabilities are known as each model’s
weight.

4. Using the following Eqaution:

> > Wij(CCFij —1)?

i J

Where i= number of mutations and j= possible mod-
els based on Y and W is the weights from LOHGIC.
This is a least squared equation that assumes the CCF
should be as close to 1 as possible, hence why only



clonal mutations are ideal for this algorithm. It then
takes the weight of the model into account and sums
up all possible models to output a final purity esti-
mate.

C. Sequencing Data Simulation

In order to ensure that our purity cleaning algorithm
was correct, a sample sequencing data simulation was
created. This program chooses a random purity that is
hidden in a separate file from fabricated data. It creates
data based on the models in figure 6, choosing a random
Y value when necessary. CNmut is also randomly se-
lected based upon the Y value. A bit of noise is added to
the allele frequency using a binomial distribution based
on a random depth since real data would not be totally
clean. In addition, the possibility of getting a few sub-
clonal mutations was also added. As a result fabricated
data would be as close to actual data as possible without
making the majority of mutations subclonal.

IV. ANALYSIS
A. Genetic Distance Types

Each mutation found inside sequencing data contains a
large amount of information. We have further processed
the data to get CCF. With a large amount of data now
available, a new challenge is discovering which parts ac-
curately measure the change in cancerous mutations over
time. The goal of forming trees is to find the genetic dis-
tance or the degree of separation, between mutations.
Luckily, this is a common problem for biologists tracing
through evolution and finding species. Therefore, there
are a variety of statistical methods that can be applied
to find an accurate measurement. Below we discuss a few
genetic distance measurements and their advantages and
disadvantages.[8]

B. Hamming Distance

This measurement is perhaps the simplest way to trace
mutations over time. It first finds all mutations found in
all samples. In our case, all samples refer to mutations
from the same patients at three different dates. Once this
list is complete, each time is measured by adding one for
every mutation present and adding nothing if the muta-
tion is not present. Figure 7 displays how the table and
tree would look using Hamming distance. This genetic
distance is helpful because it can be simply calculated,
but it’s not incredibly useful because it ignores how much
of each mutation is present in each sample. For example,
if a mutation is present in 1% of the sample it has the
same effect on the tree as a mutation that’s present in
80% of the sample.

C. Nei’s Distance

Nei’s distance[8] is a measurement that takes muta-
tions and genetic drift into account to form the following
equation:

Yo, Pi-Qi+ (1—Pi)-(1-Q1)
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In this case, P and @) are the CCF’s from two separate
time points for every mutation found at ever time in the
patient data. The reason the summation is removed and
(1—-P;) and (1 — Q;) are added to this equation is due
to the fact that we do not know how many mutations
are possible on this particular site, but we do know that
this mutation is either absent or present. Since CCF is
usually not simply 100% or 0%, Nei’s distance does a
better job of taking how frequently mutations occur into
account as opposed to the mutation just being simply
present or absent. Not only is Nei’s distance more accu-
rate than Hamming distance, it has an advantage over
other models for a few other reasons. First of all, Nei’s
distance is built off of a concept called the Kinship co-
efficient which measures the probability that two alleles
from the same person are identical[8]. This concept can
then be further translated into genetic distance or diver-
gence between mutations. Secondly, Nei’s distance has
the advantage of, if the rate of mutations is constant,
producing a linear output in reference to time since mu-
tations naturally occur at a certain rate.
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FIG. 7. Hamming vs. Nei Distances

D. Comparison

If we take a closer look at data shown in figure 7, Ham-
ming and Nei create two drastically different trees. The
data on the left side shows the location of the muta-
tion and the allele frequency for each time, the right side
shows the resulting trees. Hamming places germline clos-
est to Time 2 because Time 2 has the largest amount of
missing mutations making it appear similar to germline.
In reality, if you take a closer look at the data, Time 1 is
actually closer to germline because although it does have



most of the mutations present, a lot of its allele frequen-
cies are very small. Thus, as discussed above it makes
sense to use Nei’s distance in future trees.

E. Future Works

In the future, there are a few minor adjustments that
would make significant improvements in our research.
The first would be finding an accurate way to add sub-
clonal mutations. This involves coming up with an algo-
rithm to do so and thus may take some time. Other ways
to improve would be to find a way to add error[9] into
either calculating Nei’s distance or into the tree itself.
Since we are using sequencing data, it is never going to
be perfectly clean; therefore, we must show this in our re-
sults by also having a degree of error. Finally, after build-
ing these trees for a large number of patients, it would be
helpful to find a way to track patterns within the trees
in order to understand the evolution of cancer cells and
determine which mutations occur most frequently. [5]
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