Elucidating tumor evolutionary patterns using high-depth molecular data

> Caitlin Guccione Dr. Hossien Khiabanian

# How do we treat cancer?

What is cancer?

✤ A genetic disease caused by mutations in the DNA of particular cells

### How is it currently being treated?

Chemotherapy: Generally targets cancers cells while also killing normal cells in the process

Targeted Therapy: Goes after a specific mutation that leads to cancer

#### How do we advance treatment?

- Sequencing cancer tumors to find particular mutations
- Finding medication to target more mutations
- Understand the evolution and growth



## Basic Tree using Hamming Distance

| Gene          | Germline | Time 1 | Time 2 | Time 3 |
|---------------|----------|--------|--------|--------|
| ABL1          | 0        | 1      | 1      | 1      |
| BARD1         | 0        | 1      | 1      | 1      |
| BRCA2         | 1        | 1      | 1      | 1      |
| BRD4          | 0        | 1      | 1      | 1      |
| ERRFI1        | 0        | 1      | 1      | 1      |
| MLL2          | 1        | 1      | 1      | 1      |
| Mut1          | 0        | 0      | 1      | 0      |
| Mut2          | 0        | 0      | 1      | 0      |
| <b>NOTCH3</b> | 0        | 1      | 0      | 1      |
| PIK3CA        | 0        | 1      | 0      | 0      |
| PRDM1         | 0        | 1      | 0      | 1      |
| PTCH1         | 0        | 1      | 1      | 1      |
| PTEN          | 0        | 1      | 1      | 1      |
| SLIT2         | 0        | 1      | 0      | 1      |
| STK11         | 0        | 1      | 1      | 1      |
| TP53          | 0        | 1      | 1      | 1      |

0 - Mutation is not present

1 - Mutation is present



1.0 Mutation

# What is sequencing data?

### What's inside?

- ✤ Basic patient information ex. Gender, Age ect.
- Estimated purity of sample
  - Percentage of cancerous cells in sample
- ✤ ID number of sample

### **Mutations**

| #Chr. | Pos. Start | Pos. End | Gene   | Amino Acic | Mutation | Allele Freq. | Total Dept | Strand | CN | LOHGIC (Path. Purity); GermW,SomW,               |
|-------|------------|----------|--------|------------|----------|--------------|------------|--------|----|--------------------------------------------------|
| chr3  | 1.79E+08   | 1.79E+08 | РІКЗСА | R93Q       | 278G>A   | 1.03         | 1452       | ł      | 2  | Somatic CNmut = 1 (1.00);0.00,1.00,0.00,0.00,1,1 |

- ✤ Gene and Amino Acid: location of the mutation
- ✤ Allele Frequency: total percent of alleles with mutation
- Depth: helps calculate the error on the allele frequency

# LOHGIC's\* Output

LOHGIC (Path. Purity); GermW,SomW, Somatic CNmut = 1 (1.00) 0.00,1.00,0.00,0.00,1,1

### Somatic vs. Germline

- ✤ Germline: Found in every cell, even non-cancerous
  - ♦ Allele frequency  $\approx 50$  or  $\approx 100$
  - ✤ Are passed onto children
  - Require more aggressive treatment
- ✤ Somatic: Found in some (or all) cancer cells
  - ✤ Allele frequency varies

#### Error

Probability that the following model is correct

#### Models

- ✤ Y : Total number of copies of a gene per cell with particular mutation
- \* Copy Number of Mutations (CNmut): Total number of mutated alleles per cell with particular mutation





## Interpreting sequencing data

### Find how often **\*** mutations occurred

Image: Image:

- ✤ Allele Frequency changes drastically based on sample purity, CCF is a more stable measurement
- ✤ Added error bars to CCF based on depth and purity irregularity in data

Why find CCF?

- Focus on finding drugs for most common and toxic mutations
- Understand how mutations grow to be one step ahead

# Errors within Purity

- Often we are given multiple purities that are drastically different
- Purity is found by staining cells and then manually counting to find cancerous cells
- \* Error in purity  $\rightarrow$  Error in CCF



Comp Purity: 80% CCF: 4/8 = 50



Path Purity: 50% CCF: 4/5 = 80





# Cleaning Up Purity

#### For each mutation in the sample

| #Chr. | Pos. Start | Pos. End | Gene   | Amino Acio | Mutation  | Allele Freg. | Total Dept | Strand | CN | LOHGIC (PaPrediction - Comp. Purity (weight)                  |
|-------|------------|----------|--------|------------|-----------|--------------|------------|--------|----|---------------------------------------------------------------|
| chr3  | 1.79E+08   | 1.79E+08 | РІКЗСА | R93Q       | 278G>A    | 1.03         | 1452       | +      |    | 2 Somatic CNSomatic CNmut = 1 (1.00);0.00,1.00,0.00,0.00,1,1  |
| chr4  | 20487850   | 20487850 | SLIT2  | L190fs*3   | 568_590de | 6.07         | 923        | +      |    | 2 Somatic CNSomatic CNmut = 1 (1.00);0.00,1.00,0.00,0.00,1,1  |
| chr6  | 1.07E+08   | 1.07E+08 | PRDM1  | T524M      | 1571C>T   | 6.58         | 972        | +      |    | 2 Somatic CN Somatic CNmut = 1 (1.00);0.00,1.00,0.00,0.00,1,1 |

1. Calculate the purity, *p* for <u>each</u> model using 3. Run the the following equations mutation t



mutation through LOGIC to get the weights, Wor probability for each model



4. 
$$\sum W_{ij} (CCF_{ij} - 1)^2$$

*i* = 3 mutations *j* = 8 possible models

2. Using the *p* from the left and the given *VAF* calculate the *CCF*'s for <u>each</u> model



5. Developed a program that produced example data with a hidden purity to test the algorithm above

# Nei's Genetic Distance

### Calculate purity *p* for entire sample

| #Chr. | Pos. Start | Pos. End | Gene   | Amino Acio | Mutation  | Allele Freq. | Total Dept | Strand | CN | LOHGIC (Pa   | Prediction - Comp. Purity (weight)               |
|-------|------------|----------|--------|------------|-----------|--------------|------------|--------|----|--------------|--------------------------------------------------|
| chr3  | 1.79E+08   | 1.79E+08 | РІКЗСА | R93Q       | 278G>A    | 1.03         | 1452       | +      | 2  | 2 Somatic CN | Somatic CNmut = 1 (1.00);0.00,1.00,0.00,0.00,1,1 |
| chr4  | 20487850   | 20487850 | SLIT2  | L190fs*3   | 568_590de | 6.07         | 923        | +      | 2  | 2 Somatic CN | Somatic CNmut = 1 (1.00);0.00,1.00,0.00,0.00,1,1 |
| chr6  | 1.07E+08   | 1.07E+08 | PRDM1  | T524M      | 1571C>T   | 6.58         | 972        | +      | 2  | 2 Sematic CN | Somatic CNmut = 1 (1.00);0.00,1.00,0.00,0.00,1,1 |

For each mutation in the sample:

3.

- 1. Using given *p* and the given *VAF* calculate the *CCF*'s for <u>each</u> model
  - CCF = <u>cells with n mutation</u> cancerous cells

2. Run the mutation through LOGIC to get the weights, *W* or probability for each model



Nei's = W \* 
$$\frac{\sum_{i} Pi * Qi + \langle 1 - Pi \rangle * (1 - Qi)}{\sqrt{\sum_{i} P_{i}^{2} + (1 - P_{i})^{2}} * \sqrt{\sum_{i} P_{i}^{2} + (1 - P_{i})^{2}}}$$

# Improved Tree Using Hamming Distance

## Differences

- Time 1 vs. Time 3
- ✤ Scale
- ✤ Germline length



### End Goal

Incorporate error bars into trees since input data still has error

- Create trees for a large amount of patient data and track mutations
- Find patterns within patient trees to understand evolution of cells

# Works Cited



Technology Center

Center for Discrete Mathematics & Theoretical Computer Science Founded as a National Science Foundation Science and



[1] Khiabanian et al, JCO Precision Oncology 2018

[2] ETE 3: Reconstruction, analysis and visualization of phylogenomic data.
Jaime Huerta-Cepas, Francois Serra and Peer Bork.
Mol Biol Evol 2016; doi: 10.1093/molbev/msw046

[3] DOI: 10.1200/PO.17.00148 JCO Precision Oncology - published online January 19, 2018

[4] <u>http://ipl.physics.harvard.edu/wp-uploads/2013/03/PS3\_Error\_Propagation\_sp13.pdf</u>

This work was supported by National Science Foundation grant CCF-1559855:

**REU Site: DIMACS** 

#### RUTGERS

Cancer Institute of New Jersey at University Hospital RUTGERS HEALTH



