Climatology and Cluster Analysis:
Self-Organizing Maps (SOMs)

Ayzha D. Ward
Faculty Mentor: Dr. Benjamin Lintner
Graduate Mentor: Maxwell Pike
Department of Environmental Science
Background

- Synoptic Climatology
 - The study of atmospheric behavior and characteristics
 - Local or regional climate in specific area
 - Visual Representations
 - Global Climate Models: Coupled Model Intercomparison Project “Phase 5” (CMIP5) ensemble
 - GCMs have biases, inaccuracies that differ from reality

- Question
 - How can we obtain more accurate models?
Objectives

Broad Objectives

- Improve our understanding of climate: how and why it works the way that it does
 - Precipitation

- Test efficiency of SOMs
 - Ability to organize large climate data sets

Specific Objectives

- To identify the causes of biases in global climate models

- To learn more about SPCZ and ITCZ precipitation patterns
 - Possible relations the two large rainbands may have
Where are they located?

How SOM Analysis Works

Data Set \rightarrow \text{MATLAB} \rightarrow \text{“SOM Toolbox”} \rightarrow \text{SOM Map}
Self-Organizing Maps

- “Train” SOM neurons to match data points
 - How neurons learn data
- Colors have 3 parameter values: (Red, Blue, Green)
 - Red = (6,0,0)
 - Green = (0,0,6)
 - Neuron = (1,1,6)
SOM Analysis Methodology

TRMM Data Set
- NASA’s Tropical Rainfall Measurement Mission (TRMM)
- Observational Data
 - Observational benchmark
 - Help identify the biases

CMCC Data Set
- CMIP5 ensemble model
- Known to have biases, expect to see such
- Will be compared to TRMM SOM analysis

VS

SOM Map

SOM Map
TRMM SOM Analysis

ITCZ

SPCZ

Precip in mm
CMIP5/CMCC SOM Analysis

Precip SOM, 2 Patterns, 1999-2005 20 - 35 120 270

ITCZ

SPCZ
TRMM SOM Map Node Differences

1

2

3

4
TRMM SOM Map Nodes 1 vs. 2
TRMM SOM Map Nodes 3 vs. 4
Conclusion/Future Work

• Research strongly suggests SOMs to be an efficient data analysis tool
 – Reduces high-res data to lower, visible dimensions
 – Ability to “learn” the data set that is being used
• Results suggest anomalies are not produced by SOM analysis
 – Most likely due to CMIP5 model parameterization
• Future Work
 – Conducting SOM analysis on:
 • Other CMIP5 models
 – Plotting difference between TRMM and CMIP5 SOM nodes
Acknowledgements

• Department of Environmental Science
 – Dr. Benjamin Lintner
 – Mr. Maxwell Pike

• RiSE REU
 – Dr. Evelyn Erenrich
 – Ms. Ana Rodriguez

• DIMACS REU
 – Dr. Eugene Fiorini

• Texas Southern University
 – Dr. Lila Ghemri

• CCICADA
Climatology and Cluster Analysis: Self-Organizing Maps (SOMs)

Thank you for your time!

Questions?