Climatology and Cluster Analysis: Self-Organizing Maps (SOMs)

Ayzha Ward
RiSE REU & DIMACS REU
Summer 2014
Background

- Climatology
 - The study of climate

- Can be modeled visually:
 - Climate Models: CMIP5 ensemble
 - Downside:
 - Tend to have errors when modeling naturally-occurring processes, referred to as biases

- Question
 - How do we obtain more accurate models?
Objectives

- **Broad**
 - To understand climate: how and why it works the way that it does
 - Precipitation
 - To organize large data sets via SOMs

- **Specific**
 - To identify the causes of biases in global climate models
 - Learn more about precipitation patterns in the SPCZ and ITCZ
 - Possible relations that they may have
Self-Organizing Maps

• Novel tool in climatology
 ▫ Requires intuition when considering input and parameters
 ▫ Exploratory approach

• Concept
 ▫ Data is represented as a weighted matrix that is later converted into mapped nodes
 • Weights determined via factors such as precipitation, day, year, etc.
 ▫ Done via MATLAB
Self-Organizing Maps (cont’d)

• Color Example:
 ▫ Colors consist of 3 parameter values: (Red, Blue, Green)
 ▫ Two Nodes:
 • Red = (6,0,0)
 • Green = (0,0,6)
 • Is the color (1,1,6) closer to red or green?
 ▫ Compute Euclidian distance
 • n – the number dimensions in a vector
 • i - the i^{th} component in the vector
References & Acknowledgements

• Department of Environmental Science
 ▫ Dr. Ben Lintner (P.I.)
 ▫ Max Pike (Graduate Student)

• SOMs and Climate