MACHINE LEARNING FROM MULTIMODAL DATA

Andrea Burns
Overarching Idea

- **How does adding multimodality improve the classification performance of supervised learning algorithms?**
 - **Machine learning focus:**
 - Supervised Learning
 - Classification problems
 - **Multimodal focus:**
 - Images
First Steps

- Work with cameras of different modes

- VIS: Speed
 - PCO 1200hs
 - FLIR A7600SC

- VIS-NIR: Sensitivity
 - Princeton ProEM-HS:1024

- UV
 - PCO Ultraviolet

- SWIR: Resolution
 - UTC GA1280JS

- LWIR
 - FLIR T650SC

- LIDAR
 - Velodyne HDL32E

Wavelength (μm)
Next Steps

- Test performance level with multimodal images
 - Static/Non-Static
 - Non-human

- Submit IRB proposal
 - Potentially move to data involving humans
Bigger Picture

- Curate more datasets that can be used for training
- Expanding machine learning beyond commercial uses
 - Improve performance for machine learning’s many applications
Bigger Picture

- **Military**
 - visual occlusion
 - (e.g. fog, high forest density)
 - drones

- **Medical**
 - more accurate diagnostics

- **Security**
 - surveillance, airport security
Acknowledgements

Work supported by NSF grant CCF-1559855