## Compactness in the Mathematical Universe

#### Ava Ostrem

June 3, 2025

### Compactness

Compactness is a phenomenon in mathematics where structures are determined by their local behavior.





Compactness in nature: fractals

## Compactness in mathematics

#### Godel's compactness

A set of sentences in a first-order language has a model if and only if each finite subset has a model.

## Compactness in mathematics

#### Godel's compactness

A set of sentences in a first-order language has a model if and only if each finite subset has a model.

#### Topological compactness

A topological space is compact if every open cover of the space has a finite subcover.

### Large cardinal axioms

• Large cardinals are infinite sets which are so 'large' that their existence is not provable in ZFC.

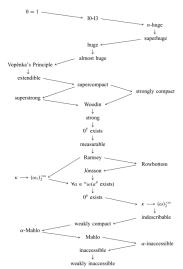
### Large cardinal axioms

• Large cardinals are infinite sets which are so 'large' that their existence is not provable in ZFC.

Theorem

If  $\kappa$  is inaccessible, then  $V_{\kappa}$  is a model of ZFC.

### Large cardinal axioms


• Large cardinals are infinite sets which are so 'large' that their existence is not provable in ZFC.

Theorem

If  $\kappa$  is inaccessible, then  $V_{\kappa}$  is a model of ZFC.

• "ZFC + 'there is an inaccessible cardinal'" has higher consistency strength than ZFC alone.

### Large cardinal chart



The arrows indicates direct implications or relative consistency implications, often both.

## Compactness with large cardinals

#### Theorem

Let  $\kappa$  be a weakly compact cardinal. If G is a  $\kappa$ -free group of cardinality less than or equal to  $\kappa$ , then G is free.

## **REU Goals**

• Finding other forms of compactness for large cardinals.

## **REU Goals**

- Finding other forms of compactness for large cardinals.
- Finding other forms of compactness for different algebraic structures.

## Acknowledgments

- Thank you to my mentor Dr. Filippo Calderoni for his guidance and support!
- Thank you to the DIMACS REU for hosting this research project.
- This work is supported by the Rutgers Department of Mathematics and NSF Grant DMS #2348819.

# Bibliography

- Paul C. Eklof and Alan H. Mekler, Almost free modules, Revised edition, North-Holland Mathematical Library, vol. 65, North-Holland Publishing Co., Amsterdam, 2002.
- Akihiro Kanamori, The Higher Infinite, Second edition, Springer, 2022.