Computations of the involutive concordance invariants

$$
\text { of }(1,1) \text {-knots }
$$

Anna Antal, Sarah Pritchard
Mentors: Dr. Kristen Hendricks, Karuna Sangam

Summer 2021

Table of Contents

(1) Background
(2) Project Goals
(3) Example Computation
(4) Results
(5) Acknowledgements

What is a Knot?

- A knot is an embedding $S^{1} \hookrightarrow S^{3}=\mathbb{R}^{3} \cup \infty$.
- A link is an embedding of a disjoint union $S^{1} \cup \cdots \cup S^{1} \hookrightarrow S^{3}$.

Figure: Trefoil Knot

Figure: Figure-Eight Knot

Figure: Borromean Rings: a 3-component link

The source of the images is the Knot Atlas: http://katlas.org/wiki/

Special Types of Knots

Torus knots:

Figure: $\mathrm{T}(9,5)$
Pretzel Knots:

Figure: $\mathrm{T}(11,4)$

Figure: $\mathrm{T}(17,3)$

Figure: 4_{1}

Figure: 5_{2}

Figure: 6_{2}

The source of the images is the Knot Atlas: http://katlas.org/wikj/

Why Knots are Important

- Many things in the real world are knotted - Applications in studying DNA
- Knots are an early case of the embedding problem.
- Knots are very closely related to 3 - and 4-dimensional manifolds.

Theorem

(Lickorish, Wallace): Every closed
3-dimensional manifold can be described in terms of some link and an integer associated to each component.

Figure: Solomon's Knot Square: a 2-component link

The source of the image is the Knot Atlas: http://katlas.org/wiki/

Knot Concordance

Definition

Two knots K_{1} and K_{2} are concordant if they cobound a smooth, properly embedded cylinder in $S^{3} \times[0,1]$.

- Concordance is an equivalence relation.
- We can study concordance invariants for knots.

Definition

A knot is considered slice if it is concordant to the unknot.

Knot Concordance

Figure: The Stevedore Knot is slice.

Figure: Another representation of the sequence above

The source of the images is Slice Knots: Knot Theory in the 4th Dimension by Peter Teichner (2010).

The Chain Complex CFK ${ }^{\infty}$

To each knot K we can associate the complex $C F K^{\infty}(K)$ which contains extensive geometric information about the knot.

Figure: $C F K^{\infty}(K)$ for the right-handed trefoil knot

Source of the figure: A Survey on Heegaard Floer Homology and Concordance by Jennifer Hom (2017).

The Automorphism ι_{K}

Definition

$$
\iota_{K}: C F K^{\infty}(K) \rightarrow C F K^{\infty}(K)
$$

- An automorphism on $C F K^{\infty}(K)$ that preserves the structure of the complex.
- Usually close to a reflection over the line $i=j$.
- Contains interesting 4-dimensional data.

Figure: The figure-eight knot

- Can detect the fact that the figure-eight knot isn't slice.

The source of the image is the Knot Atlas: http://katlas.org/wiki/

What Knots We Considered

ι_{k} has been computed for

- Torus knots
- Alternating knots
- Some pretzel knots (previous REU) We computed ι_{k} and the corresponding involutive concordance invariants for
- (1,1)-knots (for which ι_{k} hadn't been computed yet)

Figure: The pretzel knot $P(-2,3,7)$

The source of the image is: https://wikipedia.org/wiki/(-2,3,7)_pretzel_knot

Example: 10_{161}

Figure: The knot 10_{161} represented by the 4-tuple (6, 4, $-3,-1$)

Figure source: Geometry of $(1,1)$-Knots and Knot Floer Homology by Racz $_{\bar{\equiv}}$

Example: $C F K^{\infty}$ for 10_{161}

The Concordance Invariant V_{0}

V_{0} can be easily computed in an algorithmic way.

Definition

We define the chain complex A_{o}^{-}by

$$
A_{0}^{-}=C\{(i, j): i, j \leq 0\} .
$$

Definition

The concordance invariant V_{0} is given by

$$
V_{0}=-\frac{1}{2} \max \left\{r: \exists x \in H_{r}\left(A_{0}^{-}\right) \text {such that } U^{n} x \neq 0 \text { for all } \mathrm{n}\right\}
$$

Computing V_{0} for 10_{161}

We find the grading of the topmost element in the tower built from the homology of the complex.

Results: $V_{0}\left(10_{161}\right)=0, V_{0}\left(\overline{10_{161}}\right)=1$

The Involutive Concordance Invariants \underline{V}_{0} and \bar{V}_{0}

\underline{V}_{0} and \bar{V}_{0} are in general more difficult to compute than V_{0}, because they first require the computation of ι_{K}.

Definition

Let $A I_{0}^{-}$be the mapping cone Cone $\left(A_{0}^{-} \xrightarrow{\iota_{K}+\mathrm{Id}} Q A_{0}^{-}\right)$. Then, the involutive concordance invariants \underline{V}_{0} and \bar{V}_{0} are given by:

$$
\begin{aligned}
& V_{0}=-\frac{1}{2}\left(\max \left\{r: \exists x \in H_{r}\left(A I_{0}^{-}\right) \text {s.t. } U^{n} x \neq 0 \text { and } U^{n} x \notin \operatorname{Im}(Q) \quad \forall n\right\}-1\right) \\
& \bar{V}_{0}=-\frac{1}{2} \max \left\{r: \exists x \in H_{r}\left(A I_{0}^{-}\right) \text {s.t. } U^{n} x \neq 0 \quad \forall n, \exists m \geq 0 \text { s.t. } U^{m} x \in \operatorname{Im}(Q)\right\} .
\end{aligned}
$$ $\operatorname{Im}(Q)$ denotes the image of Q.

Computing the Involutive Concordance Invariants for 10_{161}

The mapping cone Cone $\left(A_{0}^{-} \xrightarrow{\iota_{K}+\mathrm{Id}} Q A_{0}^{-}\right)$is shown below:

The Homology of the Complex

We find the grading of the topmost element of each of the two towers built from the homology of the mapping cone.

$$
\left[Q U^{2} x_{4}\right]
$$

$$
\left.\left[U^{3} x_{1}+U^{3} x_{5}+U^{3} x_{10}\right] \gg U^{\downarrow}<U^{2} x_{4}+Q U^{2} x_{1}\right]
$$

$\underline{V}_{0}\left(10_{161}\right)$	$\bar{V}_{0}\left(10_{161}\right)$	$\underline{V}_{0}\left(\overline{10_{161}}\right)$	$\bar{V}_{0}\left(\overline{10_{161}}\right)$
0	-1	1	1

Results Table

\boldsymbol{K}	$\boldsymbol{V}_{0}(\boldsymbol{K})$	$\underline{\boldsymbol{V}}_{0}(\boldsymbol{K})$	$\overline{\boldsymbol{V}}_{0}(\boldsymbol{K})$	$\boldsymbol{V}_{0}(\overline{\boldsymbol{K}})$	$\underline{\boldsymbol{V}}_{0}(\overline{\boldsymbol{K}})$	$\overline{\boldsymbol{V}}_{0}(\overline{\boldsymbol{K}})$
10_{128}	1	1	1	0	0	-1
10_{132}	0	0	-1	1	1	1
10_{136}	0	0	0	0	0	0
10_{139}	2	2	1	0	0	-2
10_{145}	0	0	-1	1	1	1
$11 n_{12}$	1	1	1	0	0	-1
$11 n_{19}$	1	1	1	0	0	-1
$11 n_{20}$	0	0	0	0	0	0
$11 n_{38}$	0	0	-1	1	1	1
$11 n_{57}$	1	2	1	0	0	-1
$11 n_{61}$	1	1	0	0	0	0
$11 n_{79}$	0	0	0	0	0	0
$11 n_{96}$	0	0	-2	2	2	2

Further Results

- We verified the diagrams for the 26 11- and 12-crossing (1,1)-knots listed in Geometry of (1,1)-Knots and Knot Floer Homology by Racz.
- We identified three which were incorrect.
- Rasmussen's Knot Polynomials and Knot Homologies contained a correction for $12 n_{749}$.
- We corrected $12 n_{404}$ by narrowing down the possibilities based on some knot invariants.

A Unique Example

An example of one of the most complicated complexes we found:

Figure: $C F K^{\infty}\left(11 n_{61}\right)$

Acknowledgements

- Thank you to our mentors Dr. Hendricks and Karuna Sangam!
- Additional thanks to the DIMACS REU at Rutgers University for providing this research opportunity!
- This research was funded by NSF CAREER grant DMS-2019396.
- Thank you for listening!

