Computations of the involutive concordance invariants of (1,1)-knots

Anna Antal, Sarah Pritchard Mentors: Dr. Kristen Hendricks, Karuna Sangam

Summer 2021

Antal, Pritchard

Knot Invariants

2021 1/21

- 2 Project Goals
- 3 Example Computation

4 Results

5 Acknowledgements

< E.

What is a Knot?

- A knot is an embedding $S^1 \hookrightarrow S^3 = \mathbb{R}^3 \cup \infty$.
- A *link* is an embedding of a disjoint union $S^1 \cup \cdots \cup S^1 \hookrightarrow S^3$.

The source of the images is the Knot Atlas: http://katlas.org/wiki/

Special Types of Knots

Torus knots:

Figure: T(9,5)

Pretzel Knots:

Figure: T(11,4)

Figure: T(17,3)

Figure: 4₁

Figure: 5₂

Figure: 6₂

3

The source of the images is the Knot Atlas: http://katlas.org/wiki/

Antal, Pritchard	Knot Invariants	2021	4 / 21
------------------	-----------------	------	--------

Why Knots are Important

- Many things in the real world are knotted - Applications in studying DNA
- Knots are an early case of the embedding problem.
- Knots are very closely related to 3- and 4-dimensional manifolds.

Theorem

(Lickorish, Wallace): Every closed 3-dimensional manifold can be described in terms of some link and an integer associated to each component.

Figure: Solomon's Knot Square: a 2-component link

The source of the image is the Knot Atlas: http://katlas.org/wiki/

Definition

Two knots K_1 and K_2 are *concordant* if they cobound a smooth, properly embedded cylinder in $S^3 \times [0, 1]$.

- Concordance is an equivalence relation.
- We can study *concordance invariants* for knots.

Definition

A knot is considered *slice* if it is concordant to the unknot.

Knot Concordance

Figure: The Stevedore Knot is slice.

Figure: Another representation of the sequence above

The source of the images is *Slice Knots: Knot Theory in the 4th Dimension* by Peter Teichner (2010).

Antal, Pritchard

Knot Invariants

021 7/21

The Chain Complex CFK^{∞}

To each knot K we can associate the complex $CFK^{\infty}(K)$ which contains extensive geometric information about the knot.

Figure: $CFK^{\infty}(K)$ for the right-handed trefoil knot

Source of the figure: A Survey on Heegaard Floer Homology and Concordance by Jennifer Hom (2017).

Antal, Pritchard

2021 8 / 21

Definition

```
\iota_{K}: CFK^{\infty}(K) \to CFK^{\infty}(K)
```

- An automorphism on CFK[∞](K) that preserves the structure of the complex.
- Usually close to a reflection over the line *i* = *j*.
- Contains interesting 4-dimensional data.
- Can detect the fact that the figure-eight knot isn't slice.

The source of the image is the Knot Atlas: http://katlas.org/wiki/

Figure: The figure-eight knot

2021 9/21

- ι_k has been computed for
 - Torus knots
 - Alternating knots
 - Some pretzel knots (previous REU)

We computed ι_k and the corresponding involutive concordance invariants for

 (1,1)-knots (for which ι_k hadn't been computed yet)

Figure: The pretzel knot P(-2,3,7)

The source of the image is: $https://wikipedia.org/wiki/(-2,3,7)_pretzel_knot$

Figure source: Geometry of (1, 1)-Knots and Knot Floer Homology by Racz

Example: CFK^{∞} for 10_{161}

э

 V_0 can be easily computed in an algorithmic way.

Definition

We define the chain complex A_0^- by

$$A_0^- = C\{(i,j): i, j \le 0\}.$$

Definition

The concordance invariant V_0 is given by

$$V_0 = -rac{1}{2} \max \{r : \exists x \in H_r(A_0^-) \text{ such that } U^n x \neq 0 \text{ for all } n \}.$$

Computing V_0 for 10_{161}

We find the grading of the topmost element in the tower built from the homology of the complex.

Results: $V_0(10_{161}) = 0$, $V_0(\overline{10_{161}}) = 1$

 \underline{V}_0 and \overline{V}_0 are in general more difficult to compute than V_0 , because they first require the computation of ι_K .

Definition

Let AI_0^- be the mapping cone $\text{Cone}(A_0^- \xrightarrow{\iota_K + \text{Id}} QA_0^-)$. Then, the involutive concordance invariants \underline{V}_0 and \overline{V}_0 are given by:

$$\underline{V}_0 = -\frac{1}{2} \bigg(\max \left\{ r : \exists x \in H_r(AI_0^-) \text{ s.t. } U^n x \neq 0 \text{ and } U^n x \notin \operatorname{Im}(Q) \ \forall n \right\} - 1 \bigg).$$

 $\overline{V}_0 = -\frac{1}{2} \max \{ r : \exists x \in H_r(AI_0^-) \text{ s.t. } U^n x \neq 0 \quad \forall n, \exists m \ge 0 \text{ s.t. } U^m x \in \operatorname{Im}(Q) \}.$ $\operatorname{Im}(Q) \text{ denotes the image of } Q.$

Computing the Involutive Concordance Invariants for 10₁₆₁

The mapping cone $Cone(A_0^- \xrightarrow{\iota_K + Id} QA_0^-)$ is shown below:

The Homology of the Complex

We find the grading of the topmost element of each of the two towers built from the homology of the mapping cone.

$V_0(10_{161})$	$\overline{V}_{0}(10_{161})$	$\underline{V}_0(\overline{10_{161}})$	$\overline{V}_0(\overline{10_{161}})$
0	-1	1	1

Antal, Pritchard

2021 17 / 21

Results Table

K	$V_0(K)$	$\underline{V}_0(K)$	$\overline{\boldsymbol{V}}_0(\boldsymbol{K})$	$V_0(\overline{K})$	$\underline{V}_0(\overline{K})$	$\overline{\boldsymbol{V}}_0(\overline{\boldsymbol{K}})$
10 ₁₂₈	1	1	1	0	0	-1
10 ₁₃₂	0	0	-1	1	1	1
10136	0	0	0	0	0	0
10139	2	2	1	0	0	-2
10145	0	0	-1	1	1	1
11 <i>n</i> ₁₂	1	1	1	0	0	-1
11 <i>n</i> ₁₉	1	1	1	0	0	-1
11 <i>n</i> ₂₀	0	0	0	0	0	0
11 <i>n</i> ₃₈	0	0	-1	1	1	1
11 <i>n</i> 57	1	2	1	0	0	-1
11 <i>n</i> ₆₁	1	1	0	0	0	0
11 <i>n</i> ₇₉	0	0	0	0	0	0
11 <i>n</i> 96	0	0	-2	2	2	2

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- We verified the diagrams for the 26 11- and 12-crossing (1,1)-knots listed in *Geometry of (1,1)-Knots and Knot Floer Homology* by Racz.
- We identified three which were incorrect.
- Rasmussen's *Knot Polynomials and Knot Homologies* contained a correction for 12*n*₇₄₉.
- We corrected 12n₄₀₄ by narrowing down the possibilities based on some knot invariants.

A Unique Example

An example of one of the most complicated complexes we found:

Figure: $CFK^{\infty}(11n_{61})$

Anta	P	rite	hard
Anta	, г	nic	naru

Knot Invariants

- Thank you to our mentors Dr. Hendricks and Karuna Sangam!
- Additional thanks to the DIMACS REU at Rutgers University for providing this research opportunity!
- This research was funded by NSF CAREER grant DMS-2019396.
- Thank you for listening!