Relationships Between Combinatorial Knot Invariants

Anna Antal, Sarah Pritchard
Mentors: Dr. Kristen Hendricks, Karuna Sangam

March 2021

Table of Contents

(1) Background

(2) Our Project

(3) Acknowledgements

What is a Knot?

- A knot is an embedding $S^{1} \hookrightarrow S^{3}=\mathbb{R}^{3} \cup \infty$.
- A link is an embedding of a disjoint union $S^{1} \cup \cdots \cup S^{1} \hookrightarrow S^{3}$.

Figure: Trefoil Knot

Figure: Figure-Eight Knot

Figure: Borromean Rings: a 3-component link

The source of the images is the Knot Atlas: http://katlas.org/wiki/

Why Knots are Important

- Many things in the real world are knotted - Applications in studying DNA
- Knots are an early case of the embedding problem.
- Knots are very closely related to 3 - and 4-dimensional manifolds.

Theorem

(Lickorish, Wallace): Every closed
3-dimensional manifold can be described in terms of some link and an integer associated to each component.

Figure: Solomon's Knot Square: a 2-component link

The source of the image is the Knot Atlas: http://katlas.org/wiki/

What We're Studying

To each knot K we can associate the complex $C F K^{\infty}(K)$ which contains extensive geometric information about the knot.

Figure: $C F K^{\infty}(K)$ for the right-handed trefoil knot

Source of the figure: A Survey on Heegaard Floer Homology and Concordance by Jennifer Hom (2017).

The Object We're Looking For

Definition $\iota_{K}: C F K^{\infty}(K) \rightarrow$ CFK $^{\infty}(K)$

- Contains interesting 4-dimensional data
- Can detect the fact that the figure-eight knot doesn't bound a smooth disk in B^{4}.

Figure: The figure-eight knot

The source of the image is the Knot Atlas: http://katlas.org/wiki/

What Knots We Will Consider

ι_{k} has been computed for

- Torus knots
- Alternating knots
- Some pretzel knots (previous REU)

We want to compute ι_{k} for

- $(1,1)$-knots (for which ι_{k} hasn't been computed)

Figure: The pretzel knot $P(-2,3,7)$

The source of the image is: https://wikipedia.org/wiki/(-2,3,7)_pretzel_knot

(1, 1)-knots

Figure: The knot 10_{161} represented by the 4-tuple ($6,4,-3,-1$)

Figure source: Geometry of (1, 1)-Knots and Knot Floer Homology by Racz

Goals

- Compute ι_{K} for the 10 - and 11-crossing (1,1) knots for which it isn't known
- Understand when a $(1,1)$ diagram gives us enough information to easily compute ι_{K}

Figure: The knot 10_{161}

The source of the image is the Knot Atlas: http://katlas.org/wiki/

Acknowledgements

- Thank you to our mentors Dr. Hendricks and Karuna Sangam!
- Additional thanks to the Rutgers Math Department for hosting us!
- This research is funded by NSF CAREER grant DMS-2019396.
- Thank you for listening!

