Hartshorne's Algebraic Geometry: Varieties

Anna Antal

DIMACS REU at Rutgers University

June 2, 2020

- Let k be a fixed algebraically closed field
- An affine n-space over k, denoted A^n , is the set of all n-tuples of elements of k.
- ▶ $P = (a_1, \dots, a_n) \in \mathbf{A}^n$ with $a_i \in k$ is called a point, and the a_i are called the coordinates of P.
- $A = k[x_1, \dots, x_n]$ is the polynomial ring in *n* variables over *k*. We interpret an element $f \in A$ as a function $\mathbf{A}^n \to k$.
- Given $T \subseteq A$, the <u>zero set of T</u> is

$$Z(T) = \{P \in \mathbf{A}^n : f(P) = 0 \text{ for all } f \in T\}.$$

- A subset $Y \subseteq \mathbf{A}^n$ is an algebraic set if there exists a subset $T \subseteq A$ such that $Y = \overline{Z(T)}$.
- Proposition 1.1:
 - 1. The union of two algebraic sets is an algebraic set.
 - 2. The intersection of any family of algebraic subsets is an algebraic set.
 - 3. The empty set and whole space are algebraic sets.
- Define the <u>Zariski Topology</u> on **A**ⁿ by taking the open subsets to be the complements of the algebraic sets. By the proposition, this is a topology.

Irreducibility

- A nonempty subset Y of a topological space X is <u>irreducible</u> if it cannot be expressed as the union Y = Y₁ ∪ Y₂ of two closed, proper subsets of Y.
- Example: the affine line **A**¹ is irreducible
 - Every ideal in A = k[x] is principle (can show using the remainder theorem), so every algebraic set is the set of zeros of a single polynomial.
 - Since k is algebraically closed, every nonzero polynomial can be written as f(x) = c(x − a₁) ··· (x − a_n) with c, a₁, ···, a_n ∈ k.
 - Thus, $Z(f) = \{a_1, \cdots, a_n\}.$
 - ► A¹ is irreducible, because its only proper closed subsets are finite, yet it is infinite (since k is infinite).
- Now we can define the affine variety as an irreducible closed subset of Aⁿ (with the induced topology).

For a subset $Y \subseteq \mathbf{A}^n$, the <u>ideal of Y in A</u> is

 $I(Y) = \{ f \in A : f(P) = 0 \text{ for all } P \in Y \}.$

Proposition 1.2:

- 1. If $T_1 \subseteq T_2$ are subsets of A, then $Z(T_1) \supseteq Z(T_2)$.
- 2. If $Y_1 \subseteq Y_2$ are subsets of \mathbf{A}^n , then $I(Y_1) \supseteq I(Y_2)$.
- 3. For any two subsets Y_1, Y_2 of A^n , we have $I(Y_1 \cup Y_2) = I(Y_1) \cap I(Y_2)$.
- 4. For any ideal $a \subseteq A$, $I(Z(a)) = \sqrt{a}$, the <u>radical of a</u>, defined as

$$\sqrt{a} = \{ f \in A : f^r \in a \text{ for some } r > 0 \}.$$

5. For any subset $Y \subseteq \mathbf{A}^n$, $Z(I(Y)) = \overline{Y}$, the closure of Y, defined as the intersection of all closed sets containing Y.

Corollary 1.4

- 1. There is a one-to-one correspondence between algebraic sets in A^n and radical ideals in A.
- 2. This is given by $Y \mapsto I(Y)$ and $a \mapsto Z(a)$.
- 3. An algebraic set is irreducible \iff its ideal is a prime ideal.
- If Y ⊆ Aⁿ is an affine algebraic set, the affine coordinate ring of Y is A(Y) = A/I(Y).
- Remark: If Y is an affine variety, then A(Y) is an integral domain and a finitely generated k-algebra.