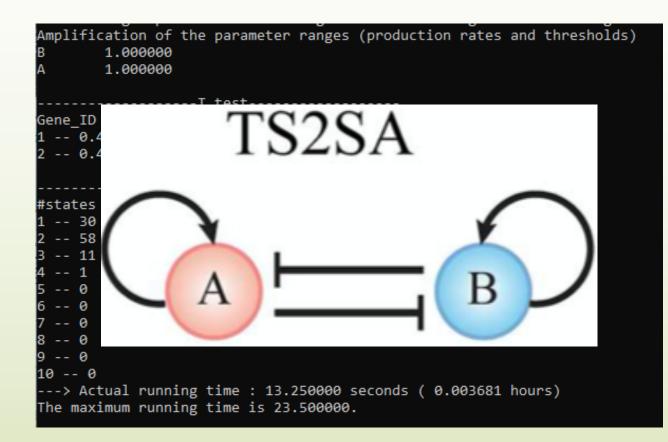
Analyzing gene regulatory networks by comparing the dynamics obtained via DSGRN (Dynamic Signatures Generated by Regulatory Networks) and RACIPE (Random Circuit Perturbation)


By Aaron Scheiner and Prince Rawal

Under Konstantin Mischaikow and Marcio Gameiro

Week Six

Our final table of test cases comparing DSGRN and RACIPE:-

All the following tables use the TS2SA fixed circuit topology.

Project Progress:-

We ran many test cases while messing with the initial conditions set by RACIPE. We changed num_ode, which correlates to how many initial conditions RACIPE uses to solve the ODE. We also changed the ODE solver type to RK45, as it was set to the Euler solver by default. We settled on default values for future test cases. We also stored the data on a google drive to make it easily accessible for future use. Finally, we generated three data tables for RACIPE data, each of which include the running time of each simulation.

Difference between the solvers:-

										running
					stable: 1	stable: 2	stable: 3	stable: 4	stable: 5	time
	solver	num_paras	minN/maxN		%	%	%	%	%	(hours)
	1	10000	2		42.34	53.69	3.94	0.03	0	0.82934
	1	10000	6		11.83	58.63	28.25	1.11	0.18	0.79932
	1	10000	10		9.27	53.99	34.2	2.26	0.28	0.82259
	1	10000	22		8.17	46.87	40.59	3.44	0.93	0.75249
	1	10000	30		8.06	45.21	41.96	3.7	1.07	0.98706
/										
	2	10000	2		41.47	54.51	3.98	0.04	0	1.69189
	2	10000	6		11.48	59.36	27.93	1.1	0.13	1.73513
	2	10000	10		9.54	53.98	33.94	2.14	0.4	1.81374
	2	10000	22		8.58	46.59	40.67	3.36	0.8	1.73867
	2	10000	30		7.78	45.01	41.79	4.14	1.28	1.8757
		DSGRN (196 Es	sential)		0	23.4694	52.0408	14.2857	10.2041	
		DSGRN (756 Es	sential + Nei	ghbors)	14.8148	39.9471	32.5397	10.0529	2.6455	
		DSGRN (1600 P	arameters)		35	40.875	16.375	6.5	1.25	
	TS2SA	num_ode=1000)							

Changing num_ode:-

_								
								running
			stable: 1		stable: 3	stable: 4	stable: 5	time
	num_ode		%	stable: 2 %	%	%	%	(hours)
	500		7.86	45.75	41.34	3.89	1.16	0.90906
	1000		7.78	45.01	41.79	4.14	1.28	1.8757
	2000		7.94	45	41.78	4.23	1.05	3.43997
	n=30	solver 2	num_paras	=10000				

Final Table:-

-										
					stable: 1	stable: 2	stable: 3	stable: 4	stable: 5	running time
	num_paras	minN/maxN	num_ode		%	%	%	%	%	(hours)
	1000	2	1000		42.3	53.5	4.2	0	0	0.17596
	1000	4	1000		15.6	65.4	18.3	0.6	0.1	0.169278
	1000	6	1000		12.4	58.4	28.1	0.9	0.2	0.182331
	1000	10	1000		11.5	49.2	36	2.9	0.4	0.164788
	1000	20	1000		7.7	45.5	42.6	3.5	0.7	0.165
	1000	30	1000		6	46.8	42.2	4	1	0.189721
/	10000	2	1000		41.47	54.51	3.98	0.04	0	1.691891
	10000	4	1000		16.17	63.98	19.43	0.37	0.05	1.742552
	10000	6	1000		11.48	59.36	27.93	1.1	0.13	1.735127
	10000	10	1000		9.54	53.98	33.94	2.14	0.4	1.813741
	10000	20	1000		8.42	47.72	39.7	3.45	0.71	2.048873
	10000	30	1000		7.78	45.01	41.79	4.14	1.28	1.875704
		DSGRN (756 E	Essential + N	leighbors	14.8148	39.9471	32.5397	10.0529	2.6455	
		DSGRN (196 I	Essential)		0	23.4694	52.0408	14.2857	10.2041	
		DSGRN (1600 Parameters)		35	40.875	16.375	6.5	1.25		
	TS2SA	Solver 2	num_ode=1	000						

Our resulting decisions for future RACIPE simulations:-

- Both ODE solvers give similar results. So we decided to do all our future test cases with solver 2: RK45.
- The number of models generated will depend on the size of the parameter space for an associated fixed circuit topology. For TS2SA, DSGRN says there are total 1600 parameter nodes, so 5000 for RACIPE seems fair.
- The number of initial conditions to solve the ODE, which was set to 100 as default, appears to give similar results for 100, 500, 1000, and 2000, with a linear increase in time taken. So keeping it low might be the best for now.
- The hill coefficient seems to give stable results when it is greater than or equal to 20 for TS2SA.

Next Steps:-

Our next steps will be to see what parameter regions correspond to the RACIPE data. We have already started understanding and working on Lun's code. We will work to efficiently run the code on TS, TS1SA, and TS2SA. This week we will find out if using essential nodes and their neighbors succeeds as a way of adapting RACIPE's sampling methods.

Thank You for Listening!

and

Thank you to the 2020 David and Dorothy Bernstein Endowed Scholarship for Summer Research and Aresty Research Center for supporting our research this summer!